用于3D体外模型和再生医学的生物制造策略。
Biofabrication strategies for 3D in vitro models and regenerative medicine.
作者信息
Moroni Lorenzo, Burdick Jason A, Highley Christopher, Lee Sang Jin, Morimoto Yuya, Takeuchi Shoji, Yoo James J
机构信息
MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, Netherlands.
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
出版信息
Nat Rev Mater. 2018 May;3(5):21-37. doi: 10.1038/s41578-018-0006-y. Epub 2018 Apr 26.
Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell-cell and cell-extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.
器官是由不同的细胞、蛋白质和信号分子组成的复杂系统,这些成分以高度有序的结构排列,以协调我们身体中的无数功能。生物制造策略可通过材料和细胞的精确沉积与组装来模拟天然组织的结构和功能,从而在体外构建三维组织模型。这种方法能够对细胞间和细胞与细胞外基质的通讯进行时空控制,进而重建类似组织的结构。在本综述中,我们研究用于构建功能性组织替代物和器官模型的生物制造策略,重点关注可通过生物制造技术进行加工的生物材料的开发,如超分子材料和光敏材料。我们强调生物打印和生物组装的组织模型,并探讨生物制造技术在重现复杂组织特性(如形状、脉管系统和特定功能)方面的潜力。最后,我们讨论该领域面临的挑战,如可扩展性和异物反应,以及机遇,并对再生医学中生物制造的未来进行展望。
相似文献
Nat Rev Mater. 2018-5
Polymers (Basel). 2021-8-4
Acta Biomater. 2023-1-15
Handchir Mikrochir Plast Chir. 2018-4
Regen Biomater. 2024-3-26
J Cardiovasc Dev Dis. 2021-10-22
Adv Biosyst. 2020-4
Acta Biomater. 2020-9-1
Acta Biomater. 2022-1-15
Annu Rev Biomed Eng. 2014-7-11
引用本文的文献
Nat Rev Methods Primers. 2023
Bioact Mater. 2025-8-6
ACS Biomater Sci Eng. 2025-8-11
Nat Rev Bioeng. 2025-2
Diagnostics (Basel). 2025-6-28
Biosensors (Basel). 2025-6-4
本文引用的文献
ACS Biomater Sci Eng. 2015-9-14
ACS Biomater Sci Eng. 2016-10-10
ACS Biomater Sci Eng. 2016-10-10
ACS Biomater Sci Eng. 2016-10-10
ACS Biomater Sci Eng. 2017-8-14
Acta Biomater. 2018-2-13
Nat Rev Mater. 2016
Biofabrication. 2018-1-12
Trends Biotechnol. 2017-11-11