Suppr超能文献

活体纤维束成像中角度分辨率与空间分辨率之间的权衡。

Trade-off between angular and spatial resolutions in in vivo fiber tractography.

作者信息

Vos Sjoerd B, Aksoy Murat, Han Zhaoying, Holdsworth Samantha J, Maclaren Julian, Viergever Max A, Leemans Alexander, Bammer Roland

机构信息

Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiology, Lucas Center, Stanford University, Stanford, CA, United States.

Department of Radiology, Lucas Center, Stanford University, Stanford, CA, United States.

出版信息

Neuroimage. 2016 Apr 1;129:117-132. doi: 10.1016/j.neuroimage.2016.01.011. Epub 2016 Jan 14.

Abstract

Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution.

摘要

纤维束成像正成为一种在活体中重建白质连接的越来越流行的方法。纤维束成像所基于的扩散MRI数据需要高角分辨率来分辨交叉纤维,而分辨相邻纤维与交叉纤维则需要高空间分辨率。然而,扫描时间会随着空间分辨率和角分辨率的提高而增加,这在临床环境中可能变得不可行。在这里,我们研究了空间分辨率和角分辨率之间的权衡,以确定这些因素中哪一个最值得投入扫描时间。我们使用先进的3D扩散加权多层回波平面成像采集技术,创建了一个具有1.0毫米各向同性分辨率和高角分辨率(100个方向)的独特扩散MRI数据集。该数据集被重建以创建低角分辨率(75、50和25个方向)和低空间分辨率(1.5、2.0和2.5毫米)的子集。使用所有子集,我们通过分析纤维束的体积重叠和解剖对应关系,研究了角分辨率和空间分辨率对三个纤维束——皮质脊髓束、弓状束和胼胝体——的影响。我们的结果表明,与具有75和100个方向的数据集相比,25和50个方向的子集提供的纤维束重建效果较差。空间分辨率为1.0、1.5和2.0毫米的数据集具有可比性,而最低分辨率(2.5毫米)的数据集质量明显较差。总之,我们发现角分辨率在改善纤维束成像结果方面似乎比空间分辨率更具影响力。只有在不降低角分辨率的情况下,高于2.0毫米的空间分辨率才似乎有利于多纤维束成像方法。

相似文献

1
Trade-off between angular and spatial resolutions in in vivo fiber tractography.
Neuroimage. 2016 Apr 1;129:117-132. doi: 10.1016/j.neuroimage.2016.01.011. Epub 2016 Jan 14.
3
Diffusion tractography of the rat knee at microscopic resolution.
Magn Reson Med. 2019 Jun;81(6):3775-3786. doi: 10.1002/mrm.27652. Epub 2019 Jan 22.
5
Spatial versus angular resolution for tractography-assisted planning of deep brain stimulation.
Neuroimage Clin. 2020;25:102116. doi: 10.1016/j.nicl.2019.102116. Epub 2019 Dec 9.
8
Structure Tensor Informed Fiber Tractography (STIFT) by combining gradient echo MRI and diffusion weighted imaging.
Neuroimage. 2012 Feb 15;59(4):3941-54. doi: 10.1016/j.neuroimage.2011.10.078. Epub 2011 Oct 28.
9
Spatial HARDI: improved visualization of complex white matter architecture with Bayesian spatial regularization.
Neuroimage. 2011 Jan 1;54(1):396-409. doi: 10.1016/j.neuroimage.2010.07.040. Epub 2010 Jul 27.
10
Tractometer: towards validation of tractography pipelines.
Med Image Anal. 2013 Oct;17(7):844-57. doi: 10.1016/j.media.2013.03.009. Epub 2013 Apr 25.

引用本文的文献

1
The tractographer's dilemma: understanding sources of variability in tractography.
Brain Struct Funct. 2025 Jun 16;230(6):99. doi: 10.1007/s00429-025-02964-y.
2
Super-resolution mapping of anisotropic tissue structure with diffusion MRI and deep learning.
Sci Rep. 2025 Feb 24;15(1):6580. doi: 10.1038/s41598-025-90972-7.
3
Surface-based tracking for short association fibre tractography.
Neuroimage. 2022 Oct 15;260:119423. doi: 10.1016/j.neuroimage.2022.119423. Epub 2022 Jul 7.
4
5
The Role of White Matter in the Neural Control of Swallowing: A Systematic Review.
Front Hum Neurosci. 2021 Jun 28;15:628424. doi: 10.3389/fnhum.2021.628424. eCollection 2021.
6
Diffusion tractography for awake craniotomy: accuracy and factors affecting specificity.
J Neurooncol. 2021 Jul;153(3):547-557. doi: 10.1007/s11060-021-03795-7. Epub 2021 Jul 1.
7
In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution.
Sci Data. 2021 Apr 29;8(1):122. doi: 10.1038/s41597-021-00904-z.
8
Diffusion-based tractography atlas of the human acoustic radiation.
Sci Rep. 2019 Mar 11;9(1):4046. doi: 10.1038/s41598-019-40666-8.
9
Whole mouse brain connectomics.
J Comp Neurol. 2019 Sep 1;527(13):2146-2157. doi: 10.1002/cne.24560. Epub 2018 Nov 23.
10
Altered white matter connectivity in patients with schizophrenia: An investigation using public neuroimaging data from SchizConnect.
PLoS One. 2018 Oct 9;13(10):e0205369. doi: 10.1371/journal.pone.0205369. eCollection 2018.

本文引用的文献

1
"MASSIVE" brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation.
Magn Reson Med. 2017 May;77(5):1797-1809. doi: 10.1002/mrm.26259. Epub 2016 May 13.
2
Reliability of brain volume measurements: a test-retest dataset.
Sci Data. 2014 Oct 14;1:140037. doi: 10.1038/sdata.2014.37. eCollection 2014.
3
Tractography of the optic radiation: a repeatability and reproducibility study.
NMR Biomed. 2015 Apr;28(4):423-31. doi: 10.1002/nbm.3266. Epub 2015 Feb 23.
4
Interpolation of diffusion weighted imaging datasets.
Neuroimage. 2014 Dec;103:202-213. doi: 10.1016/j.neuroimage.2014.09.005. Epub 2014 Sep 16.
5
Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data.
Neuroimage. 2014 Dec;103:411-426. doi: 10.1016/j.neuroimage.2014.07.061. Epub 2014 Aug 7.
7
Preventing visual field deficits from neurosurgery.
Neurology. 2014 Aug 12;83(7):604-11. doi: 10.1212/WNL.0000000000000685. Epub 2014 Jul 11.
9
Multi-fiber tractography visualizations for diffusion MRI data.
PLoS One. 2013 Nov 25;8(11):e81453. doi: 10.1371/journal.pone.0081453. eCollection 2013.
10
Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography.
Neuroimage. 2014 Feb 1;86:404-16. doi: 10.1016/j.neuroimage.2013.10.026. Epub 2013 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验