Vos Sjoerd B, Aksoy Murat, Han Zhaoying, Holdsworth Samantha J, Maclaren Julian, Viergever Max A, Leemans Alexander, Bammer Roland
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiology, Lucas Center, Stanford University, Stanford, CA, United States.
Department of Radiology, Lucas Center, Stanford University, Stanford, CA, United States.
Neuroimage. 2016 Apr 1;129:117-132. doi: 10.1016/j.neuroimage.2016.01.011. Epub 2016 Jan 14.
Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution.
纤维束成像正成为一种在活体中重建白质连接的越来越流行的方法。纤维束成像所基于的扩散MRI数据需要高角分辨率来分辨交叉纤维,而分辨相邻纤维与交叉纤维则需要高空间分辨率。然而,扫描时间会随着空间分辨率和角分辨率的提高而增加,这在临床环境中可能变得不可行。在这里,我们研究了空间分辨率和角分辨率之间的权衡,以确定这些因素中哪一个最值得投入扫描时间。我们使用先进的3D扩散加权多层回波平面成像采集技术,创建了一个具有1.0毫米各向同性分辨率和高角分辨率(100个方向)的独特扩散MRI数据集。该数据集被重建以创建低角分辨率(75、50和25个方向)和低空间分辨率(1.5、2.0和2.5毫米)的子集。使用所有子集,我们通过分析纤维束的体积重叠和解剖对应关系,研究了角分辨率和空间分辨率对三个纤维束——皮质脊髓束、弓状束和胼胝体——的影响。我们的结果表明,与具有75和100个方向的数据集相比,25和50个方向的子集提供的纤维束重建效果较差。空间分辨率为1.0、1.5和2.0毫米的数据集具有可比性,而最低分辨率(2.5毫米)的数据集质量明显较差。总之,我们发现角分辨率在改善纤维束成像结果方面似乎比空间分辨率更具影响力。只有在不降低角分辨率的情况下,高于2.0毫米的空间分辨率才似乎有利于多纤维束成像方法。