Pesce Marica, Repetti Audrey, Auría Anna, Daducci Alessandro, Thiran Jean-Philippe, Wiaux Yves
Institute of Sensors Signals and Systems (ISSS), Heriot-Watt University, Edinburgh EH14 4AS, UK.
Department of Actuarial Mathematics & Statistics (AMS), Heriot-Watt University, Edinburgh EH14 4AS, UK.
J Imaging. 2021 Oct 27;7(11):226. doi: 10.3390/jimaging7110226.
High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a 3D kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for the reconstruction of the fiber orientation distribution (FOD) is regularized by a prior promoting simultaneously voxel-wise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter, and cerebrospinal fluid is also leveraged. A minimization problem is formulated and solved via a stochastic forward-backward algorithm. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes potentially enabling high spatio-angular resolution dMRI in the clinical setting.
高空间角分辨率扩散磁共振成像(dMRI)已被证明能够准确识别复杂的神经元纤维结构,不过代价是采集时间较长。我们提出了一种方法,依靠三维kq空间欠采样方案在高空间角分辨率下恢复体素内纤维结构,以实现加速采集。通过同时促进纤维方向的体素级稀疏性和空间平滑性的先验对纤维方向分布(FOD)重建的逆问题进行正则化。还利用了白质、灰质和脑脊液空间分布的先验知识。通过随机前向-后向算法制定并解决了一个最小化问题。模拟和实际数据分析表明,从严重的kq空间欠采样状态可以实现准确的FOD映射,这有可能在临床环境中实现高空间角分辨率dMRI。