Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
Nature. 2024 Sep;633(8028):83-89. doi: 10.1038/s41586-024-07872-5. Epub 2024 Aug 28.
Crystallographic phase engineering plays an important part in the precise control of the physical and electronic properties of materials. In two-dimensional transition metal dichalcogenides (2D TMDs), phase engineering using chemical lithiation with the organometallization agent n-butyllithium (n-BuLi), to convert the semiconducting 2H (trigonal) to the metallic 1T (octahedral) phase, has been widely explored for applications in areas such as transistors, catalysis and batteries. Although this chemical phase engineering can be performed at ambient temperatures and pressures, the underlying mechanisms are poorly understood, and the use of n-BuLi raises notable safety concerns. Here we optically visualize the archetypical phase transition from the 2H to the 1T phase in mono- and bilayer 2D TMDs and discover that this reaction can be accelerated by up to six orders of magnitude using low-power illumination at 455 nm. We identify that the above-gap illumination improves the rate-limiting charge-transfer kinetics through a photoredox process. We use this method to achieve rapid and high-quality phase engineering of TMDs and demonstrate that this methodology can be harnessed to inscribe arbitrary phase patterns with diffraction-limited edge resolution into few-layer TMDs. Finally, we replace pyrophoric n-BuLi with safer polycyclic aromatic organolithiation agents and show that their performance exceeds that of n-BuLi as a phase transition agent. Our work opens opportunities for exploring the in situ characterization of electrochemical processes and paves the way for sustainably scaling up materials and devices by photoredox phase engineering.
晶体相工程在精确控制材料的物理和电子性质方面起着重要作用。在二维过渡金属二卤化物(2D TMDs)中,使用有机金属化试剂正丁基锂(n-BuLi)进行化学锂化的相工程,将半导体 2H(三角)转化为金属 1T(八面体)相,已广泛应用于晶体管、催化和电池等领域。虽然这种化学相工程可以在环境温度和压力下进行,但基本机制仍不清楚,并且使用 n-BuLi 会引起明显的安全问题。在这里,我们通过光学手段直观地观察了单层和双层 2D TMDs 中从 2H 相到 1T 相的典型相变,并发现使用 455nm 的低功率照明可以将反应速度提高多达六个数量级。我们确定了带隙以上的照明通过光还原过程改善了限域转移动力学的速率限制步骤。我们使用这种方法实现了 TMDs 的快速和高质量的相工程,并证明了这种方法可以用于以具有衍射极限边缘分辨率的任意相图案对少层 TMDs 进行刻写。最后,我们用更安全的多环芳烃有机锂化试剂代替易燃的 n-BuLi,并表明它们作为相转变试剂的性能优于 n-BuLi。我们的工作为探索电化学过程的原位表征开辟了机会,并为通过光还原相工程可持续扩大材料和器件规模铺平了道路。