Suppr超能文献

脊椎动物成对附肢发育与进化中的顺式调控程序。

Cis-regulatory programs in the development and evolution of vertebrate paired appendages.

作者信息

Gehrke Andrew R, Shubin Neil H

机构信息

Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Semin Cell Dev Biol. 2016 Sep;57:31-39. doi: 10.1016/j.semcdb.2016.01.015. Epub 2016 Jan 16.

Abstract

Differential gene expression is the core of development, mediating the genetic changes necessary for determining cell identity. The regulation of gene activity by cis-acting elements (e.g., enhancers) is a crucial mechanism for determining differential gene activity by precise control of gene expression in embryonic space and time. Modifications to regulatory regions can have profound impacts on phenotype, and therefore developmental and evolutionary biologists have increasingly focused on elucidating the transcriptional control of genes that build and pattern body plans. Here, we trace the evolutionary history of transcriptional control of three loci key to vertebrate appendage development (Fgf8, Shh, and HoxD/A). Within and across these regulatory modules, we find both complex and flexible regulation in contrast with more fixed enhancers that appear unchanged over vast timescales of vertebrate evolution. The transcriptional control of vertebrate appendage development was likely already incredibly complex in the common ancestor of fish, implying that subtle changes to regulatory networks were more likely responsible for alterations in phenotype rather than the de novo addition of whole regulatory domains. Finally, we discuss the dangers of relying on inter-species transgenesis when testing enhancer function, and call for more controlled regulatory swap experiments when inferring the evolutionary history of enhancer elements.

摘要

差异基因表达是发育的核心,介导了决定细胞身份所需的遗传变化。顺式作用元件(如增强子)对基因活性的调控是通过精确控制胚胎发育过程中基因表达的时空模式来决定差异基因活性的关键机制。调控区域的修饰可对表型产生深远影响,因此发育生物学家和进化生物学家越来越关注阐明构建身体结构和模式的基因的转录调控机制。在这里,我们追溯了脊椎动物附肢发育关键的三个基因座(Fgf8、Shh和HoxD/A)转录调控的进化历史。在这些调控模块内部和之间,我们发现了复杂且灵活的调控,这与在脊椎动物漫长进化过程中似乎保持不变的更为固定的增强子形成对比。脊椎动物附肢发育的转录调控在鱼类的共同祖先中可能就已经极其复杂,这意味着调控网络的细微变化更有可能是导致表型改变的原因,而非全新添加整个调控结构域。最后,我们讨论了在测试增强子功能时依赖种间转基因的风险,并呼吁在推断增强子元件的进化历史时进行更可控的调控交换实验。

相似文献

1
Cis-regulatory programs in the development and evolution of vertebrate paired appendages.
Semin Cell Dev Biol. 2016 Sep;57:31-39. doi: 10.1016/j.semcdb.2016.01.015. Epub 2016 Jan 16.
2
Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12782-6. doi: 10.1073/pnas.1109993108. Epub 2011 Jul 15.
3
The Evolution of Bony Vertebrate Enhancers at Odds with Their Coding Sequence Landscape.
Genome Biol Evol. 2015 Aug 6;7(8):2333-43. doi: 10.1093/gbe/evv146.
4
Evolution of vertebrate appendicular structures: Insight from genetic and palaeontological data.
Dev Dyn. 2011 May;240(5):1005-16. doi: 10.1002/dvdy.22572. Epub 2011 Feb 18.
5
Global control regions and regulatory landscapes in vertebrate development and evolution.
Adv Genet. 2008;61:175-205. doi: 10.1016/S0065-2660(07)00006-5.
7
The temporal dynamics of vertebrate limb development, teratogenesis and evolution.
Curr Opin Genet Dev. 2010 Aug;20(4):384-90. doi: 10.1016/j.gde.2010.04.014. Epub 2010 May 27.
8
Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes.
Dev Cell. 2015 Oct 12;35(1):107-19. doi: 10.1016/j.devcel.2015.09.003. Epub 2015 Oct 1.
10
Evidence that mechanisms of fin development evolved in the midline of early vertebrates.
Nature. 2006 Aug 31;442(7106):1033-7. doi: 10.1038/nature04984. Epub 2006 Jul 26.

引用本文的文献

1
Ancient developmental genes underlie evolutionary novelties in walking fish.
Curr Biol. 2024 Oct 7;34(19):4339-4348.e6. doi: 10.1016/j.cub.2024.08.042. Epub 2024 Sep 26.
2
Splicing is dynamically regulated during limb development.
Sci Rep. 2024 Aug 27;14(1):19944. doi: 10.1038/s41598-024-68608-z.
4
Identification of ancestral gnathostome Gli3 enhancers with activity in mammals.
Dev Growth Differ. 2024 Jan;66(1):75-88. doi: 10.1111/dgd.12901. Epub 2023 Dec 20.
5
The genetic basis of novel trait gain in walking fish.
bioRxiv. 2023 Oct 14:2023.10.14.562356. doi: 10.1101/2023.10.14.562356.
6
-regulatory landscapes in the evolution and development of the mammalian skull.
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 3;378(1880):20220079. doi: 10.1098/rstb.2022.0079. Epub 2023 May 15.
7
The bowfin genome illuminates the developmental evolution of ray-finned fishes.
Nat Genet. 2021 Sep;53(9):1373-1384. doi: 10.1038/s41588-021-00914-y. Epub 2021 Aug 30.
8
Evolutionary divergence of a Hoxa2b hindbrain enhancer in syngnathids mimics results of functional assays.
Dev Genes Evol. 2021 Jul;231(3-4):57-71. doi: 10.1007/s00427-021-00676-x. Epub 2021 May 18.
9
Future Tail Tales: A Forward-Looking, Integrative Perspective on Tail Research.
Integr Comp Biol. 2021 Sep 8;61(2):521-537. doi: 10.1093/icb/icab082.

本文引用的文献

1
Structural and functional diversity of Topologically Associating Domains.
FEBS Lett. 2015 Oct 7;589(20 Pt A):2877-84. doi: 10.1016/j.febslet.2015.08.044. Epub 2015 Sep 5.
2
ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors.
Nat Methods. 2015 Oct;12(10):963-965. doi: 10.1038/nmeth.3542. Epub 2015 Aug 17.
3
CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.
Cell. 2015 Aug 13;162(4):900-10. doi: 10.1016/j.cell.2015.07.038.
4
A microfluidic device for epigenomic profiling using 100 cells.
Nat Methods. 2015 Oct;12(10):959-62. doi: 10.1038/nmeth.3488. Epub 2015 Jul 27.
5
Single-cell chromatin accessibility reveals principles of regulatory variation.
Nature. 2015 Jul 23;523(7561):486-90. doi: 10.1038/nature14590. Epub 2015 Jun 17.
6
Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7524-9. doi: 10.1073/pnas.1509022112. Epub 2015 Jun 1.
7
Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing.
Science. 2015 May 22;348(6237):910-4. doi: 10.1126/science.aab1601. Epub 2015 May 7.
8
Structure, function and evolution of topologically associating domains (TADs) at HOX loci.
FEBS Lett. 2015 Oct 7;589(20 Pt A):2869-76. doi: 10.1016/j.febslet.2015.04.024. Epub 2015 Apr 23.
9
Organogenesis in deep time: A problem in genomics, development, and paleontology.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):4871-6. doi: 10.1073/pnas.1403665112.
10
Three-dimensional genome architecture: players and mechanisms.
Nat Rev Mol Cell Biol. 2015 Apr;16(4):245-57. doi: 10.1038/nrm3965. Epub 2015 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验