Guven Sinan, Chen Pu, Inci Fatih, Tasoglu Savas, Erkmen Burcu, Demirci Utkan
Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA.
BAMM Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Trends Biotechnol. 2015 May;33(5):269-279. doi: 10.1016/j.tibtech.2015.02.003. Epub 2015 Mar 18.
Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bioengineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures.
我们对细胞生物学及其与材料科学整合的理解,已促成了组织模拟移植物生物工程领域的技术创新,这些移植物可用于临床和制药应用。天然样多尺度构建模块的生物工程可对细胞微环境进行精细控制,从而实现功能性组织。在本综述中,我们专注于从生物分子水平到毫米尺度组装构建模块。我们还概述了组装分子、细胞、球体和微凝胶以及实现自下而上组织工程的技术。此外,我们讨论了用于创建微米到宏观尺度组织结构的自组装和引导组装的驱动机制。