Suppr超能文献

从解码视角测量整合信息。

Measuring Integrated Information from the Decoding Perspective.

作者信息

Oizumi Masafumi, Amari Shun-ichi, Yanagawa Toru, Fujii Naotaka, Tsuchiya Naotsugu

机构信息

RIKEN Brain Science Institute, Wako, Saitama, Japan.

School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Clayton, Victoria, Australia.

出版信息

PLoS Comput Biol. 2016 Jan 21;12(1):e1004654. doi: 10.1371/journal.pcbi.1004654. eCollection 2016 Jan.

Abstract

Accumulating evidence indicates that the capacity to integrate information in the brain is a prerequisite for consciousness. Integrated Information Theory (IIT) of consciousness provides a mathematical approach to quantifying the information integrated in a system, called integrated information, Φ. Integrated information is defined theoretically as the amount of information a system generates as a whole, above and beyond the amount of information its parts independently generate. IIT predicts that the amount of integrated information in the brain should reflect levels of consciousness. Empirical evaluation of this theory requires computing integrated information from neural data acquired from experiments, although difficulties with using the original measure Φ precludes such computations. Although some practical measures have been previously proposed, we found that these measures fail to satisfy the theoretical requirements as a measure of integrated information. Measures of integrated information should satisfy the lower and upper bounds as follows: The lower bound of integrated information should be 0 and is equal to 0 when the system does not generate information (no information) or when the system comprises independent parts (no integration). The upper bound of integrated information is the amount of information generated by the whole system. Here we derive the novel practical measure Φ* by introducing a concept of mismatched decoding developed from information theory. We show that Φ* is properly bounded from below and above, as required, as a measure of integrated information. We derive the analytical expression of Φ* under the Gaussian assumption, which makes it readily applicable to experimental data. Our novel measure Φ* can generally be used as a measure of integrated information in research on consciousness, and also as a tool for network analysis on diverse areas of biology.

摘要

越来越多的证据表明,大脑中整合信息的能力是意识的先决条件。意识的整合信息理论(IIT)提供了一种数学方法来量化系统中整合的信息,即所谓的整合信息Φ。整合信息在理论上被定义为一个系统作为一个整体所产生的信息量,超过其各部分独立产生的信息量。IIT预测大脑中整合信息的量应反映意识水平。对该理论的实证评估需要从实验获取的神经数据中计算整合信息,尽管使用原始度量Φ存在困难,这使得此类计算无法进行。虽然此前已经提出了一些实用度量,但我们发现这些度量作为整合信息的度量未能满足理论要求。整合信息的度量应满足以下上下界:整合信息的下界应为0,当系统不产生信息(无信息)或系统由独立部分组成(无整合)时等于0。整合信息的上界是整个系统产生的信息量。在这里,我们通过引入从信息论发展而来的错配解码概念,推导出了新的实用度量Φ*。我们表明,作为整合信息的度量,Φ按要求在上下界都有恰当的界定。我们在高斯假设下推导出了Φ的解析表达式,这使其易于应用于实验数据。我们新的度量Φ*通常可作为意识研究中整合信息的度量,也可作为生物学不同领域网络分析的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35cd/4721632/9503d688a4cc/pcbi.1004654.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验