Kitazono Jun, Kanai Ryota, Oizumi Masafumi
Araya, Inc., Toranomon 15 Mori Building, 2-8-10 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan.
Entropy (Basel). 2018 Mar 6;20(3):173. doi: 10.3390/e20030173.
The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information ( Φ ) in the brain is related to the level of consciousness. IIT proposes that, to quantify information integration in a system as a whole, integrated information should be measured across the partition of the system at which information loss caused by partitioning is minimized, called the Minimum Information Partition (MIP). The computational cost for exhaustively searching for the MIP grows exponentially with system size, making it difficult to apply IIT to real neural data. It has been previously shown that, if a measure of Φ satisfies a mathematical property, submodularity, the MIP can be found in a polynomial order by an optimization algorithm. However, although the first version of Φ is submodular, the later versions are not. In this study, we empirically explore to what extent the algorithm can be applied to the non-submodular measures of Φ by evaluating the accuracy of the algorithm in simulated data and real neural data. We find that the algorithm identifies the MIP in a nearly perfect manner even for the non-submodular measures. Our results show that the algorithm allows us to measure Φ in large systems within a practical amount of time.
大脑整合信息的能力被认为是认知和意识的一项基本属性。整合信息理论(IIT)假设大脑中整合信息的量(Φ)与意识水平相关。IIT提出,为了量化整个系统中的信息整合,应在系统划分时信息损失最小化的划分处测量整合信息,这被称为最小信息划分(MIP)。详尽搜索MIP的计算成本会随着系统规模呈指数级增长,这使得将IIT应用于真实神经数据变得困难。先前已经表明,如果Φ的一种度量满足一种数学性质,即次模性,那么可以通过一种优化算法以多项式阶找到MIP。然而,尽管Φ的第一个版本是次模性的,但后来的版本并非如此。在本研究中,我们通过评估算法在模拟数据和真实神经数据中的准确性,实证探索该算法在何种程度上可应用于非次模性的Φ度量。我们发现,即使对于非次模性度量,该算法也能以近乎完美的方式识别MIP。我们的结果表明,该算法使我们能够在实际可行的时间内测量大型系统中的Φ。