Suppr超能文献

从人类意识状态下的高密度脑电图估计综合信息测度Phi

Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans.

作者信息

Kim Hyoungkyu, Hudetz Anthony G, Lee Joseph, Mashour George A, Lee UnCheol

机构信息

Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States.

Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States.

出版信息

Front Hum Neurosci. 2018 Feb 16;12:42. doi: 10.3389/fnhum.2018.00042. eCollection 2018.

Abstract

The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain.

摘要

整合信息理论(IIT)提出了一种定量度量,记为Φ,用于衡量物理系统中的整合信息量,该理论假定其与意识存在同一性关系。IIT预测,从大脑活动估计出的Φ值代表了跨系统发育和功能状态的意识水平。实际限制,例如估计真实系统的Φ所需的巨大计算量,阻碍了其在大脑研究中的应用,并引发了对IIT总体效用的质疑。为了在研究人类大脑方面具有实际相关性,从多通道脑电图(EEG)建立可靠的Φ估计并定义Φ与传统上用于定义意识状态的EEG特性之间的关系将是有益的。在本研究中,我们介绍了一种从高密度(128通道)EEG估计Φ并确定每个通道对Φ贡献的实用方法。我们研究了在不同麻醉剂调制的各种意识状态下,EEG的功率、频率、功能连接性和模块化与区域Φ的相关性。我们发现仅靠我们对Φ的近似不足以区分某些麻醉状态。然而,由与Φ和EEG连接性相关的四个参数扩展的多维参数空间能够区分所有意识状态。在临床定义的麻醉状态下,Φ与EEG连接性的关联代表了IIT应用的一种新的实用方法,可用于表征人类大脑中各种生理(睡眠)、药理(麻醉)和病理(昏迷)意识状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6773/5821001/5b3d089a825a/fnhum-12-00042-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验