Murray Thomas D, Lyubimov Artem Y, Ogata Craig M, Vo Huy, Uervirojnangkoorn Monarin, Brunger Axel T, Berger James M
Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology and Photon Science, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
Acta Crystallogr D Biol Crystallogr. 2015 Oct;71(Pt 10):1987-97. doi: 10.1107/S1399004715015011. Epub 2015 Sep 26.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10-15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.
微晶给通过X射线衍射方法测定大分子结构带来了重大阻碍。尽管微聚焦同步加速器光束线和X射线自由电子激光(XFEL)能够从微晶中收集可解释的衍射数据,但仍需要高效的方法来收集在常规实验室条件下生长的小体积(<2 μl)微晶,并在其天然生长条件下将它们递送至X射线束源。在克服微晶分析固有挑战方面显示出前景的一种方法是将所谓的“固定靶”样品递送装置与基于微束的X射线衍射方法相结合。然而,为了记录微弱的衍射图案,有必要用能使背景散射最小化的X射线透明材料制造装置。本文介绍了一种新型微衍射装置的设计,该装置由氮化硅、光刻胶和聚酰亚胺薄膜制成的三层结构组成。该芯片具有低X射线散射和X射线吸收特性,并使用了疏水性和亲水性表面图案的可定制组合,以帮助将微晶定位到特定区域。处于天然生长条件的微晶可用标准移液器加载到芯片中,从而在室温下进行数据收集。从加载到芯片中的蛋清溶菌酶微晶(10 - 15μm)收集的衍射数据产生了一个完整的高分辨率(<1.6 Å)数据集,足以通过分子置换确定高质量的结构。该芯片的特性允许在微聚焦同步加速器光束线和XFEL上对几乎任何实验室条件下生长的微晶进行快速且用户友好的分析。