Miao Li-Li, Hou Yan-Jie, Fan Hong-Xia, Qu Jie, Qi Chao, Liu Ying, Li De-Feng, Liu Zhi-Pei
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Appl Environ Microbiol. 2016 Jan 22;82(7):2021-2030. doi: 10.1128/AEM.03158-15.
Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures.
嗜冷酶在微生物的冷适应过程中发挥着关键作用,并为蛋白质进化、折叠及动态特性的研究提供了有用的模型。我们研究了嗜冷β-葡萄糖苷酶BglU的晶体结构(分辨率为2.2 Å),该酶是在嗜冷细菌南极微球菌中发现的糖基水解酶1(GH1)酶家族的成员。BglU与其嗜温及嗜热对应酶(分别为BglB和GlyTn)之间的结构比较和序列比对揭示了BglU的两个显著特征:(i)参与底物结合的独特长环L3(其他酶中为35个氨基酸,而在其他酶中为7个氨基酸);(ii)参与稳定有序水分子链的独特氨基酸His299(其他酶中为Tyr)。将环L3缩短至25个氨基酸会降低低温催化活性、底物结合能力、最适温度和解链温度(Tm)。将His299突变为Tyr会提高最适温度、Tm和催化活性。相反,在BglB中将Tyr301突变为His会导致催化活性、热稳定性和最适温度降低(从45°C降至35°C)。环L3缩短和H299Y取代共同将酶活性恢复至BglU的水平,但在中等温度下。我们的研究结果表明,环L3控制低温下的催化活性水平,His299残基负责热不稳定性(特别是活性中心的热不稳定性),长环L3和His299共同负责嗜冷特性。所描述的BglU冷适应性的结构基础将有助于基于结构的新型冷适应酶工程设计,并有助于生产在不同温度下适用于各种工业过程的突变体。