Suppr超能文献

一种具有多阶段分类方案的新特征集成用于乳腺癌诊断。

A New Feature Ensemble with a Multistage Classification Scheme for Breast Cancer Diagnosis.

机构信息

Department of Electrical Electronics Engineering, Bilecik Seyh Edebali University, 11210 Bilecik, Turkey.

Department of Electrical Electronics Engineering, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey.

出版信息

J Healthc Eng. 2017;2017:3895164. doi: 10.1155/2017/3895164. Epub 2017 Jun 19.

Abstract

A new and effective feature ensemble with a multistage classification is proposed to be implemented in a computer-aided diagnosis (CAD) system for breast cancer diagnosis. A publicly available mammogram image dataset collected during the Image Retrieval in Medical Applications (IRMA) project is utilized to verify the suggested feature ensemble and multistage classification. In achieving the CAD system, feature extraction is performed on the mammogram region of interest (ROI) images which are preprocessed by applying a histogram equalization followed by a nonlocal means filtering. The proposed feature ensemble is formed by concatenating the local configuration pattern-based, statistical, and frequency domain features. The classification process of these features is implemented in three cases: a one-stage study, a two-stage study, and a three-stage study. Eight well-known classifiers are used in all cases of this multistage classification scheme. Additionally, the results of the classifiers that provide the top three performances are combined via a majority voting technique to improve the recognition accuracy on both two- and three-stage studies. A maximum of 85.47%, 88.79%, and 93.52% classification accuracies are attained by the one-, two-, and three-stage studies, respectively. The proposed multistage classification scheme is more effective than the single-stage classification for breast cancer diagnosis.

摘要

提出了一种新的有效的特征集合并采用多阶段分类方法,以实现用于乳腺癌诊断的计算机辅助诊断(CAD)系统。利用在医学图像检索(IRMA)项目中收集的公开可用的乳房 X 光图像数据集来验证所提出的特征集合并进行多阶段分类。在实现 CAD 系统时,对经过直方图均衡化和非局部均值滤波预处理的感兴趣区域(ROI)图像进行特征提取。所提出的特征集由基于局部配置模式的、统计的和频域特征的串联组成。这些特征的分类过程在三个案例中实施:单阶段研究、两阶段研究和三阶段研究。在多阶段分类方案的所有情况下,使用了八种著名的分类器。此外,通过多数投票技术将提供前三名性能的分类器的结果结合起来,以提高两阶段和三阶段研究的识别准确性。一阶段、两阶段和三阶段研究的分类准确率分别高达 85.47%、88.79%和 93.52%。与单阶段分类相比,所提出的多阶段分类方案在乳腺癌诊断中更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db68/5494793/0e7f08aa70a6/JHE2017-3895164.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验