Suppr超能文献

力纳米技术作为一种通用平台,用于量化针对细菌病原体的抗粘附化合物的活性。

Force Nanoscopy as a Versatile Platform for Quantifying the Activity of Antiadhesion Compounds Targeting Bacterial Pathogens.

作者信息

Beaussart Audrey, Abellán-Flos Marta, El-Kirat-Chatel Sofiane, Vincent Stéphane P, Dufrêne Yves F

机构信息

Université catholique de Louvain , Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium.

University of Namur , Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium.

出版信息

Nano Lett. 2016 Feb 10;16(2):1299-307. doi: 10.1021/acs.nanolett.5b04689. Epub 2016 Jan 26.

Abstract

The development of bacterial strains that are resistant to multiple antibiotics has urged the need for new antibacterial therapies. An exciting approach to fight bacterial diseases is the use of antiadhesive agents capable to block the adhesion of the pathogens to host tissues, the first step of infection. We report the use of a novel atomic force microscopy (AFM) platform for quantifying the activity of antiadhesion compounds directly on living bacteria, thus without labeling or purification. Novel fullerene-based mannoconjugates bearing 10 carbohydrate ligands and a thiol bond were efficiently prepared. The thiol functionality could be exploited as a convenient handle to graft the multimeric species onto AFM tips. Using a combination of single-molecule and single-cell AFM assays, we demonstrate that, unlike mannosidic monomers, multivalent glycofullerenes strongly block the adhesion of uropathogenic Escherichia coli bacteria to their carbohydrate receptors. We expect that the nanoscopy technique developed here will help designing new antiadhesion drugs to treat microbial infections, including those caused by multidrug resistant organisms.

摘要

对多种抗生素具有抗性的细菌菌株的出现促使人们需要新的抗菌疗法。一种对抗细菌性疾病令人兴奋的方法是使用能够阻断病原体与宿主组织粘附(感染的第一步)的抗粘附剂。我们报告了一种新型原子力显微镜(AFM)平台的使用,该平台可直接在活细菌上定量抗粘附化合物的活性,因此无需标记或纯化。高效制备了带有10个碳水化合物配体和一个硫醇键的新型基于富勒烯的甘露糖缀合物。硫醇官能团可作为将多聚体物种接枝到AFM尖端的便利手段。通过结合单分子和单细胞AFM分析,我们证明,与甘露糖苷单体不同,多价糖基富勒烯强烈阻断尿路致病性大肠杆菌对其碳水化合物受体的粘附。我们期望这里开发的纳米显微镜技术将有助于设计新的抗粘附药物来治疗微生物感染,包括由多重耐药生物体引起的感染。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验