Stroustrup Nicholas, Anthony Winston E, Nash Zachary M, Gowda Vivek, Gomez Adam, López-Moyado Isaac F, Apfeld Javier, Fontana Walter
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Nature. 2016 Feb 4;530(7588):103-7. doi: 10.1038/nature16550. Epub 2016 Jan 27.
The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.
衰老过程使得死亡的可能性越来越大,其中涉及一个随机因素,即使在同质群体中,也会导致寿命分布广泛。对这种随机行为的研究可能会将分子机制与决定寿命的衰老过程联系起来。在这里,通过收集大量人群的高精度死亡率统计数据,我们观察到,诸如饮食变化、温度变化、暴露于氧化应激以及破坏包括热休克因子hsf-1、缺氧诱导因子hif-1以及胰岛素/IGF-1信号通路成分daf-2、age-1和daf-16等基因在内的各种干预措施,都会通过明显的时间拉伸或收缩来改变寿命分布。为了产生这种时间尺度变化,每种干预措施必须在整个成年期同等程度地改变所有死亡风险的生理决定因素。因此,秀丽隐杆线虫的机体衰老似乎涉及一些生理方面,这些生理方面会对各种不同的干预措施做出协同反应。通过这种方式,时间尺度变化识别出一个新的状态变量r(t),它控制着死亡风险,其平均衰减动态涉及一个单一的有效衰老速率常数kr。产生时间尺度变化的干预措施仅通过改变kr来影响寿命。即使在成年早期短暂应用这些干预措施,也会暂时改变kr,随之r的变化速率会出现短暂的增加或减少,并对剩余寿命产生永久性影响。一种在遗传和环境背景下都不变的机体衰老动态的存在,为一个新的定量框架提供了基础,该框架用于评估特定分子过程以何种方式以及在何种程度上对决定寿命的衰老方面产生影响。