Suppr超能文献

具有高容量和长寿命锂离子电池阴极的LiV3O8纳米颗粒/还原氧化石墨烯的超分散纳米结构

Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes.

作者信息

Mo Runwei, Du Ying, Rooney David, Ding Guqiao, Sun Kening

机构信息

Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001, (China).

State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai, 20050, (China).

出版信息

Sci Rep. 2016 Jan 28;6:19843. doi: 10.1038/srep19843.

Abstract

Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g(-1) after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g(-1) at 0.9 A g(-1), 128 mA h g(-1) at 1.5 A g(-1), 91 mA h g(-1) at 3 A g(-1) and 59 mA h g(-1) at 6 A g(-1), respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

摘要

缺乏高性能阴极材料已成为锂离子电池在先进通信设备和电动汽车中应用的主要障碍。在本文中,我们报道了一种通用的界面反应策略,该策略基于空间限制的理念,用于在石墨烯上合成超分散的LiV3O8纳米颗粒(~10纳米)(表示为LVO NPs-GNs),在油包水乳液体系中,对纳米颗粒的成核、生长、锚定和结晶的分离与操控程度达到前所未有的水平,优于溶液中的自由生长。制备的LVO NPs-GNs复合材料作为锂离子电池的阴极材料表现出高性能,包括高可逆锂存储容量(200次循环后为237 mA h g(-1))、高库仑效率(约98%)、优异的循环稳定性和高倍率性能(在0.9 A g(-1)时高达176 mA h g(-1),在1.5 A g(-1)时为128 mA h g(-1),在3 A g(-1)时为91 mA h g(-1),在6 A g(-1)时为59 mA h g(-1))。非常重要的是,所采用的制备方法易于调整,可能为利用石墨烯设计和制造用于先进能量存储的复杂混合材料打开大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f5b/4730191/d7c3b022d955/srep19843-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验