Suppr超能文献

SOHSite:整合进化信息和理化性质以识别蛋白质S-亚磺酰化位点。

SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.

作者信息

Bui Van-Minh, Weng Shun-Long, Lu Cheng-Tsung, Chang Tzu-Hao, Weng Julia Tzu-Ya, Lee Tzong-Yi

机构信息

Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, 320, Taiwan.

Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsin-Chu, 300, Taiwan.

出版信息

BMC Genomics. 2016 Jan 11;17 Suppl 1(Suppl 1):9. doi: 10.1186/s12864-015-2299-1.

Abstract

BACKGROUND

Protein S-sulfenylation is a type of post-translational modification (PTM) involving the covalent binding of a hydroxyl group to the thiol of a cysteine amino acid. Recent evidence has shown the importance of S-sulfenylation in various biological processes, including transcriptional regulation, apoptosis and cytokine signaling. Determining the specific sites of S-sulfenylation is fundamental to understanding the structures and functions of S-sulfenylated proteins. However, the current lack of reliable tools often limits researchers to use expensive and time-consuming laboratory techniques for the identification of S-sulfenylation sites. Thus, we were motivated to develop a bioinformatics method for investigating S-sulfenylation sites based on amino acid compositions and physicochemical properties.

RESULTS

In this work, physicochemical properties were utilized not only to identify S-sulfenylation sites from 1,096 experimentally verified S-sulfenylated proteins, but also to compare the effectiveness of prediction with other characteristics such as amino acid composition (AAC), amino acid pair composition (AAPC), solvent-accessible surface area (ASA), amino acid substitution matrix (BLOSUM62), position-specific scoring matrix (PSSM), and positional weighted matrix (PWM). Various prediction models were built using support vector machine (SVM) and evaluated by five-fold cross-validation. The model constructed from hybrid features, including PSSM and physicochemical properties, yielded the best performance with sensitivity, specificity, accuracy and MCC measurements of 0.746, 0.737, 0.738 and 0.337, respectively. The selected model also provided a promising accuracy (0.693) on an independent testing dataset. Additionally, we employed TwoSampleLogo to help discover the difference of amino acid composition among S-sulfenylation, S-glutathionylation and S-nitrosylation sites.

CONCLUSION

This work proposed a computational method to explore informative features and functions for protein S-sulfenylation. Evaluation by five-fold cross validation indicated that the selected features were effective in the identification of S-sulfenylation sites. Moreover, the independent testing results demonstrated that the proposed method could provide a feasible means for conducting preliminary analyses of protein S-sulfenylation. We also anticipate that the uncovered differences in amino acid composition may facilitate future studies of the extensive crosstalk among S-sulfenylation, S-glutathionylation and S-nitrosylation.

摘要

背景

蛋白质S-亚磺酰化是一种翻译后修饰(PTM),涉及羟基与半胱氨酸氨基酸的硫醇共价结合。最近的证据表明S-亚磺酰化在各种生物过程中具有重要性,包括转录调控、细胞凋亡和细胞因子信号传导。确定S-亚磺酰化的特定位点是理解S-亚磺酰化蛋白质结构和功能的基础。然而,目前缺乏可靠的工具常常限制研究人员使用昂贵且耗时的实验室技术来鉴定S-亚磺酰化位点。因此,我们有动力开发一种基于氨基酸组成和物理化学性质来研究S-亚磺酰化位点的生物信息学方法。

结果

在这项工作中,物理化学性质不仅用于从1096个经实验验证的S-亚磺酰化蛋白质中识别S-亚磺酰化位点,还用于与其他特征(如氨基酸组成(AAC)、氨基酸对组成(AAPC)、溶剂可及表面积(ASA)、氨基酸替换矩阵(BLOSUM62)、位置特异性评分矩阵(PSSM)和位置加权矩阵(PWM))比较预测效果。使用支持向量机(SVM)构建了各种预测模型,并通过五折交叉验证进行评估。由包括PSSM和物理化学性质的混合特征构建的模型表现最佳,其灵敏度、特异性、准确性和马修斯相关系数(MCC)测量值分别为0.746、0.737、0.738和0.337。所选模型在独立测试数据集上也提供了有前景(0.693)的准确率。此外,我们使用TwoSampleLogo来帮助发现S-亚磺酰化、S-谷胱甘肽化和S-亚硝基化位点之间氨基酸组成的差异。

结论

这项工作提出了一种计算方法来探索蛋白质S-亚磺酰化的信息特征和功能。通过五折交叉验证评估表明所选特征在识别S-亚磺酰化位点方面是有效的。此外,独立测试结果表明所提出的方法可为蛋白质S-亚磺酰化的初步分析提供一种可行的手段。我们还预期所揭示的氨基酸组成差异可能有助于未来对S-亚磺酰化、S-谷胱甘肽化和S-亚硝基化之间广泛串扰的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed85/4895302/50ec7911c4a6/12864_2015_2299_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验