Maier Alexander M, Weig Cornelius, Oswald Peter, Frey Erwin, Fischer Peer, Liedl Tim
Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz 1, 80539 München, Germany.
Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München , Theresienstraße 37, 80333 Munich, Germany.
Nano Lett. 2016 Feb 10;16(2):906-10. doi: 10.1021/acs.nanolett.5b03716. Epub 2016 Feb 1.
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.
我们证明,基于DNA的自组装可作为一种通用且灵活的工具,用于构建长度为几微米、直径仅几十纳米的人造鞭毛。通过将DNA鞭毛附着在生物相容性磁性微粒上,我们提供了一种混合结构的概念验证演示,这种混合结构在外部磁场中旋转时,借助鞭毛束推进,类似于自行推进的周毛菌。我们的理论分析预测,与具有单个附属物的游动体相比,具有长度依赖性弯曲刚度的鞭毛束应表现出更高的游动速度。DNA自组装方法能够实现这些改进的鞭毛束,与我们的定量模型高度吻合。形状得到良好控制的DNA鞭毛可从根本上提高完全生物相容性纳米机器人的功能,并扩展活性材料的范围和复杂性。