Suppr超能文献

用于基因组编辑和基因调控合理设计的CRISPR/Cas9活性生物物理模型

A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation.

作者信息

Farasat Iman, Salis Howard M

机构信息

Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America.

Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2016 Jan 29;12(1):e1004724. doi: 10.1371/journal.pcbi.1004724. eCollection 2016 Jan.

Abstract

The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9's off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits.

摘要

精确修饰基因组和调控特定基因的能力将极大地加速多种医学和工程应用。CRISPR/Cas9(II型)系统利用向导RNA结合并切割DNA,不过控制其靶向和脱靶活性的变量仍未得到充分表征。在此,我们开发并参数化了基于Cas9的基因组编辑和基因调控的全系统生物物理模型,以预测改变向导RNA序列、DNA超螺旋密度、Cas9和crRNA表达水平、生物体及生长条件,以及实验条件如何共同控制在所有具有标准和非标准PAM的DNA位点上基于dCas9的结合和基于Cas9的切割的动力学。我们结合统计热力学和动力学来模拟Cas9:crRNA复合物的形成、扩散、位点选择、可逆R环形成和切割,使用大量的结构、生化、表达和下一代测序数据来确定动力学参数并开发自由能模型。我们的结果确定DNA超螺旋是控制Cas9结合的一种新机制。利用该模型,我们预测了Cas9在λ噬菌体和人类基因组中的脱靶结合频率,并解释了为何Cas9的脱靶活性会如此之高。基于这一深入理解,我们提出了几条用于设计实验以最小化脱靶活性的规则。我们还讨论了对构建基于dCas9的遗传回路的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/198f/4732943/8b8788947942/pcbi.1004724.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验