Venkatareddy Madhusudan, Verma Rakesh, Kalinowski Anne, Patel Sanjeevkumar R, Shisheva Assia, Garg Puneet
Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and.
Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.
J Am Soc Nephrol. 2016 Sep;27(9):2702-19. doi: 10.1681/ASN.2015050555. Epub 2016 Jan 29.
The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34-deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux.
肾小球滤过屏障防止大分子物质丢失并同时维持滤过功能的机制仍未完全明确。最近的研究表明,足细胞在滤过的大分子物质的内吞作用以及滤过屏障的维持中发挥着积极作用。在足细胞中删除关键的内体运输调节因子3类磷脂酰肌醇(PtdIns)3激酶液泡蛋白分选34(Vps34),会导致内体膜形态异常和足细胞功能障碍。我们最近发现,培养的Vps34缺陷型足细胞中的空泡化表型是由于缺乏Vps34下游效应物磷脂酰肌醇3磷酸5激酶(PIKfyve)的底物所致,该激酶将Vps34产生的磷脂酰肌醇(3)磷酸(PtdIns(3)P)磷酸化以产生磷脂酰肌醇(3,5)二磷酸(PtdIns(3,5)P2)。PIKfyve功能紊乱和PtdIns(3,5)P2减少会导致沿内体系统出现大量膜空泡化,但PIKfyve在体内的细胞特异性功能仍不清楚。我们在此表明,在具有活跃内吞作用的近端肾小管细胞中基因删除PIKfyve会导致在晚期内体阶段内吞运输进程停滞,从而形成大的细胞质空泡。相比之下,即使在18月龄小鼠中,肾小球足细胞中PIKfyve的缺失也不会显著改变内体形态。然而,在培养时,PIKfyve缺失的足细胞会形成大量细胞质空泡。总之,这些数据表明肾小球足细胞和近端肾小管对PIKfyve功能有不同需求,这可能与内吞通量的不同体内需求有关。