Suppr超能文献

使用生存百分位数评估相加相互作用。

Evaluating Additive Interaction Using Survival Percentiles.

作者信息

Bellavia Andrea, Bottai Matteo, Orsini Nicola

机构信息

From the aUnit of Biostatistics, and bUnit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

出版信息

Epidemiology. 2016 May;27(3):360-4. doi: 10.1097/EDE.0000000000000449.

Abstract

Evaluation of statistical interaction in time-to-event analysis is usually limited to the study of multiplicative interaction, via inclusion of a product term in a Cox proportional-hazard model. Measures of additive interaction are available but seldom used. All measures of interaction in survival analysis, whether additive or multiplicative, are in the metric of hazard, usually assuming that the interaction between two predictors of interest is constant during the follow-up period. We introduce a measure to evaluate additive interaction in survival analysis in the metric of time. This measure can be calculated by evaluating survival percentiles, defined as the time points by which different subpopulations reach the same incidence proportion. Using this approach, the probability of the outcome is fixed and the time variable is estimated. We also show that by using a regression model for the evaluation of conditional survival percentiles, including a product term between the two exposures in the model, interaction is evaluated as a deviation from additivity of the effects. In the simple case of two binary exposures, the product term is interpreted as excess/decrease in survival time (i.e., years, months, days) due to the presence of both exposures. This measure of interaction is dependent on the fraction of events being considered, thus allowing evaluation of how interaction changes during the observed follow-up. Evaluation of interaction in the context of survival percentiles allows deriving a measure of additive interaction without assuming a constant effect over time, overcoming two main limitations of commonly used approaches.

摘要

在生存时间分析中,统计交互作用的评估通常局限于通过在Cox比例风险模型中纳入乘积项来研究相乘交互作用。相加交互作用的度量方法是可用的,但很少被使用。生存分析中所有的交互作用度量方法,无论是相加的还是相乘的,都是基于风险度量,通常假设在随访期间两个感兴趣的预测因子之间的交互作用是恒定的。我们引入一种在时间度量下评估生存分析中相加交互作用的方法。该方法可以通过评估生存百分位数来计算,生存百分位数定义为不同亚组达到相同发病比例的时间点。使用这种方法,结局的概率是固定的,时间变量是估计的。我们还表明,通过使用回归模型来评估条件生存百分位数,包括在模型中两个暴露因素之间的乘积项,交互作用被评估为效应相加性的偏差。在两个二元暴露因素的简单情况下,乘积项被解释为由于两个暴露因素同时存在而导致的生存时间(即年、月、日)的增加/减少。这种交互作用度量方法依赖于所考虑的事件比例,从而允许评估在观察到的随访期间交互作用是如何变化的。在生存百分位数的背景下评估交互作用,可以得出一种相加交互作用的度量方法,而无需假设效应随时间恒定,克服了常用方法的两个主要局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9fd/4820661/f730e8e3eb22/ede-27-360-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验