Wang Liang-Wei, Cheng Chung-Fu, Liao Jung-Wei, Wang Chiu-Yen, Wang Ding-Shuo, Huang Kuo-Feng, Lin Tzu-Ying, Ho Rong-Ming, Chen Lih-Juann, Lai Chih-Huang
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Nanoscale. 2016 Feb 21;8(7):3926-35. doi: 10.1039/c5nr08339g.
A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.
本文提出了一种通过热去湿和化学异质纳米模板制备金属纳米颗粒的方法。对于模板,我们在Si|SiO2衬底上制备了纳米结构的聚苯乙烯-b-聚二甲基硅氧烷(PS-b-PDMS)薄膜,随后进行热退火和反应离子蚀刻(RIE)工艺。这得到了一个由在聚苯乙烯基质中出现的SiOC半球有序六边形阵列组成的模板。在该模板上沉积FePt薄膜后,我们利用快速热退火(RTA)工艺(该工艺提供面内应力)同时实现FePt的热去湿和结构有序化。由于模板由具有周期性变化形态的不同组成表面组成,它提供了更多用于操纵纳米结构的调节旋钮。我们表明,PS基质面积的减小和应变能弛豫的增加将去湿图案从随机分布的纳米颗粒转变为L10 FePt纳米颗粒的六边形周期性阵列。带有原位加热台的透射电子显微镜揭示了去湿过程的演变,并证实了纳米颗粒的位置与SiOC半球的位置对齐。通过这种模板去湿形成的纳米颗粒的平均直径和中心距分别为19.30±2.09 nm和39.85±4.80 nm。FePt纳米颗粒的六边形阵列显示出1.5 T的大矫顽力,远大于通过自上而下方法制备的纳米颗粒。这种方法为在广泛的材料系统中实现自组装纳米结构提供了一条有效途径。