Suppr超能文献

动态DNA甲基化控制谷氨酸受体转运和突触缩放。

Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.

作者信息

Sweatt J David

机构信息

Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.

出版信息

J Neurochem. 2016 May;137(3):312-30. doi: 10.1111/jnc.13564. Epub 2016 Mar 3.

Abstract

Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and demethylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously considered separately: glutamate receptor trafficking, DNA methylation, and homeostatic plasticity.

摘要

长期以来,赫布可塑性,包括长时程增强和长时程抑制,在记忆形成和稳定的背景下,一直被认为对局部神经回路的精细化很重要。然而,神经回路的发育和稳定还依赖于非赫布性的、稳态的可塑性形式,如突触缩放。突触缩放由神经元活动的慢性增加或减少所诱导。突触缩放与突触后受体密度的全细胞范围调节相关,并且可以以乘法方式发生,从而在整个神经元的突触群体中保持相对突触强度。在学习过程中,主动DNA甲基化和去甲基化均已被证实是基因转录的关键调节因子,并且已知突触缩放依赖于转录。然而,尚不清楚诸如突触缩放等稳态可塑性形式是否通过表观遗传机制进行调节。本综述描述了最近令人兴奋的研究工作,这些工作表明神经元DNA甲基化和去甲基化的主动变化作为突触缩放和谷氨酸受体转运的控制器发挥作用。这些发现将以前很大程度上被分开考虑的三类主要的记忆相关机制结合在一起:DNA甲基化、稳态可塑性和谷氨酸受体转运。本综述描述了最近令人兴奋的研究工作,这些工作表明神经元DNA甲基化和去甲基化的主动变化作为突触缩放和谷氨酸受体转运的控制器发挥作用。这些发现将以前被分别考虑的三类主要的记忆相关机制结合在一起:谷氨酸受体转运、DNA甲基化和稳态可塑性。

相似文献

1
Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.
J Neurochem. 2016 May;137(3):312-30. doi: 10.1111/jnc.13564. Epub 2016 Mar 3.
2
Neural plasticity and behavior - sixty years of conceptual advances.
J Neurochem. 2016 Oct;139 Suppl 2:179-199. doi: 10.1111/jnc.13580. Epub 2016 Mar 10.
3
LTD, LTP, and the sliding threshold for long-term synaptic plasticity.
Hippocampus. 1996;6(1):35-42. doi: 10.1002/(SICI)1098-1063(1996)6:1<35::AID-HIPO7>3.0.CO;2-6.
4
The AMPA Receptor Code of Synaptic Plasticity.
Neuron. 2018 Oct 24;100(2):314-329. doi: 10.1016/j.neuron.2018.10.018.
5
DNA methylation regulates neuronal glutamatergic synaptic scaling.
Sci Signal. 2015 Jun 23;8(382):ra61. doi: 10.1126/scisignal.aab0715.
6
Glutamate receptor trafficking in synaptic plasticity.
Sci STKE. 2002 Oct 29;2002(156):re14. doi: 10.1126/stke.2002.156.re14.
7
Synaptic plasticity: taming the beast.
Nat Neurosci. 2000 Nov;3 Suppl:1178-83. doi: 10.1038/81453.
8
Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors.
Neuron. 2006 Nov 9;52(3):475-84. doi: 10.1016/j.neuron.2006.08.034.
9
Mechanisms of homeostatic plasticity in the excitatory synapse.
J Neurochem. 2016 Dec;139(6):973-996. doi: 10.1111/jnc.13687. Epub 2016 Jul 1.
10
Homeostatic plasticity and NMDA receptor trafficking.
Trends Neurosci. 2005 May;28(5):229-38. doi: 10.1016/j.tins.2005.03.004.

引用本文的文献

1
The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents.
Neurosci Biobehav Rev. 2024 Sep;164:105809. doi: 10.1016/j.neubiorev.2024.105809. Epub 2024 Jul 14.
2
GRIK1 promotes glioblastoma malignancy and is a novel prognostic factor of poor prognosis.
Oncol Res. 2024 Mar 20;32(4):727-736. doi: 10.32604/or.2023.043391. eCollection 2024.
3
The computational power of the human brain.
Front Cell Neurosci. 2023 Aug 7;17:1220030. doi: 10.3389/fncel.2023.1220030. eCollection 2023.
5
Role of DNMTs in the Brain.
Adv Exp Med Biol. 2022;1389:363-394. doi: 10.1007/978-3-031-11454-0_15.
6
The Interconnected Mechanisms of Oxidative Stress and Neuroinflammation in Epilepsy.
Antioxidants (Basel). 2022 Jan 14;11(1):157. doi: 10.3390/antiox11010157.
7
Epigenomic Remodeling in Huntington's Disease-Master or Servant?
Epigenomes. 2020 Jul 31;4(3):15. doi: 10.3390/epigenomes4030015.
10
Effect of Aggressive Experience in Female Syrian Hamsters on Glutamate Receptor Expression in the Nucleus Accumbens.
Front Behav Neurosci. 2020 Nov 23;14:583395. doi: 10.3389/fnbeh.2020.583395. eCollection 2020.

本文引用的文献

1
DNA methylation changes in plasticity genes accompany the formation and maintenance of memory.
Nat Neurosci. 2016 Jan;19(1):102-10. doi: 10.1038/nn.4194. Epub 2015 Dec 14.
2
Synapse and genome: An elusive tête-à-tête.
Sci Signal. 2015 Sep 29;8(396):pe2. doi: 10.1126/scisignal.aad2441.
3
DNA methylation regulates neuronal glutamatergic synaptic scaling.
Sci Signal. 2015 Jun 23;8(382):ra61. doi: 10.1126/scisignal.aab0715.
4
DNA methylation regulates neurophysiological spatial representation in memory formation.
Neuroepigenetics. 2015 Apr 1;2:1-8. doi: 10.1016/j.nepig.2015.03.001.
5
Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair.
Nat Neurosci. 2015 Jun;18(6):836-43. doi: 10.1038/nn.4008. Epub 2015 Apr 27.
6
Histone H2A.Z subunit exchange controls consolidation of recent and remote memory.
Nature. 2014 Nov 27;515(7528):582-6. doi: 10.1038/nature13707. Epub 2014 Sep 14.
7
Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity.
Neuropharmacology. 2014 May;80:3-17. doi: 10.1016/j.neuropharm.2014.01.001. Epub 2014 Jan 10.
8
Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain.
Nat Neurosci. 2014 Feb;17(2):215-22. doi: 10.1038/nn.3607. Epub 2013 Dec 22.
9
The emerging field of neuroepigenetics.
Neuron. 2013 Oct 30;80(3):624-32. doi: 10.1016/j.neuron.2013.10.023.
10
Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity.
J Cell Biol. 2013 Oct 28;203(2):175-86. doi: 10.1083/jcb.201306030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验