Suppr超能文献

多组学数据驱动的分析为微生物和哺乳动物细胞中的合成基因设计建立了参考密码子偏好。

Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells.

作者信息

Ang Kok Siong, Kyriakopoulos Sarantos, Li Wei, Lee Dong-Yup

机构信息

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.

Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.

出版信息

Methods. 2016 Jun 1;102:26-35. doi: 10.1016/j.ymeth.2016.01.016. Epub 2016 Feb 2.

Abstract

In this study, we analyzed multi-omics data and subsets thereof to establish reference codon usage biases for codon optimization in synthetic gene design. Specifically, publicly available genomic, transcriptomic, proteomic and translatomic data for microbial and mammalian expression hosts, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Chinese hamster ovary (CHO) cells, were compiled to derive their individual codon and codon pair frequencies. Then, host dependent and -omics specific codon biases were generated and compared by principal component analysis and hierarchical clustering. Interestingly, our results indicated the similar codon bias patterns of the highly expressed transcripts, highly abundant proteins, and efficiently translated mRNA in microbial cells, despite the general lack of correlation between mRNA and protein expression levels. However, for CHO cells, the codon bias patterns among various -omics subsets are not distinguishable, forming one cluster. Thus, we further investigated the effect of different input codon biases on codon optimized sequences using the codon context (CC) and individual codon usage (ICU) design parameters, via in silico case study on the expression of human IFNγ sequence in CHO cells. The results supported that CC is more robust design parameter than ICU for improved heterologous gene design.

摘要

在本研究中,我们分析了多组学数据及其子集,以建立合成基因设计中密码子优化的参考密码子使用偏好。具体而言,我们收集了微生物和哺乳动物表达宿主(大肠杆菌、酿酒酵母、巴斯德毕赤酵母和中国仓鼠卵巢(CHO)细胞)的公开可用基因组、转录组、蛋白质组和翻译组数据,以得出它们各自的密码子和密码子对频率。然后,通过主成分分析和层次聚类生成并比较宿主依赖性和组学特异性密码子偏好。有趣的是,我们的结果表明,尽管mRNA与蛋白质表达水平之间通常缺乏相关性,但微生物细胞中高表达转录本、高丰度蛋白质和高效翻译的mRNA具有相似的密码子偏好模式。然而,对于CHO细胞,各种组学子集之间的密码子偏好模式无法区分,形成一个聚类。因此,我们通过对CHO细胞中人IFNγ序列表达的计算机模拟案例研究,进一步研究了不同输入密码子偏好在密码子优化序列上对密码子上下文(CC)和单个密码子使用(ICU)设计参数的影响。结果支持,对于改进的异源基因设计,CC是比ICU更稳健的设计参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验