Suppr超能文献

在人类亨廷顿舞蹈病成纤维细胞中使用转录激活样效应因子对突变亨廷顿等位基因进行等位基因特异性敲减。

Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts.

作者信息

Fink Kyle D, Deng Peter, Gutierrez Josh, Anderson Joseph S, Torrest Audrey, Komarla Anvita, Kalomoiris Stefanos, Cary Whitney, Anderson Johnathon D, Gruenloh William, Duffy Alexandra, Tempkin Teresa, Annett Geralyn, Wheelock Vicki, Segal David J, Nolta Jan A

机构信息

Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health Systems, Sacramento, CA, USA.

出版信息

Cell Transplant. 2016;25(4):677-86. doi: 10.3727/096368916X690863. Epub 2016 Feb 4.

Abstract

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases.

摘要

亨廷顿舞蹈症(HD)是一种由CAG重复序列异常扩增引起的常染色体显性神经退行性疾病。尽管发病机制被认为与这种多聚谷氨酰胺扩增有关,但亨廷顿蛋白发挥作用的潜在机制尚未阐明。有人提出,通过蛋白质干扰或条件性基因敲除在出生后减少突变型亨廷顿蛋白,可能被证明是治疗HD患者的有效方法。为了实现等位基因特异性靶向,设计了转录激活样效应因子(TALE)来靶向突变等位基因中的单核苷酸多态性(SNP),并将其包装到含有KRAB的载体骨架中,以促进疾病相关等位基因的转录抑制。另外的TALE被包装到含有异源二聚体FokI的载体骨架中,并被设计用作核酸酶(TALEN),以导致突变等位基因中的CAG序列塌陷。用每种TALE-SNP或TALEN处理人HD成纤维细胞。使用SNP基因分型测定法测量等位基因表达,并用抗泛素的蛋白质印迹法定量突变蛋白聚集。与对照转染相比,TALE-SNP和TALEN显著降低了突变等位基因的表达(p <0.05),同时不影响非疾病等位基因的表达。这项研究证明了使用TALE蛋白进行等位基因特异性基因修饰的潜力,并为患有亨廷顿舞蹈症或其他遗传相关疾病的个体的靶向治疗提供了基础。

相似文献

2
Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
J Huntingtons Dis. 2013;2(4):491-500. doi: 10.3233/JHD-130079.
3
Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9.
Hum Mol Genet. 2016 Oct 15;25(20):4566-4576. doi: 10.1093/hmg/ddw286.
5
Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients.
Curr Biol. 2009 May 12;19(9):774-8. doi: 10.1016/j.cub.2009.03.030. Epub 2009 Apr 9.
7
CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo.
Mol Ther. 2017 Jan 4;25(1):12-23. doi: 10.1016/j.ymthe.2016.11.010.
8
Allele-Selective Suppression of Mutant Huntingtin in Primary Human Blood Cells.
Sci Rep. 2017 Apr 24;7:46740. doi: 10.1038/srep46740.
9
Gene targeting techniques for Huntington's disease.
Ageing Res Rev. 2021 Sep;70:101385. doi: 10.1016/j.arr.2021.101385. Epub 2021 Jun 5.
10
Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels.
J Clin Invest. 2016 Nov 1;126(11):4319-4330. doi: 10.1172/JCI83185. Epub 2016 Oct 10.

引用本文的文献

1
Advances in Gene and Cellular Therapeutic Approaches for Huntington's Disease.
Protein Cell. 2024 Aug 9. doi: 10.1093/procel/pwae042.
2
Protocol for Allele-Specific Epigenome Editing Using CRISPR/dCas9.
Methods Mol Biol. 2024;2842:179-192. doi: 10.1007/978-1-0716-4051-7_9.
3
Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease.
J Transl Int Med. 2024 May 21;12(2):134-147. doi: 10.2478/jtim-2023-0142. eCollection 2024 Apr.
4
Huntington's Disease: Complex Pathogenesis and Therapeutic Strategies.
Int J Mol Sci. 2024 Mar 29;25(7):3845. doi: 10.3390/ijms25073845.
5
Development of super-specific epigenome editing by targeted allele-specific DNA methylation.
Epigenetics Chromatin. 2023 Oct 21;16(1):41. doi: 10.1186/s13072-023-00515-5.
6
From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research.
Int J Mol Sci. 2023 Aug 21;24(16):13021. doi: 10.3390/ijms241613021.
7
CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
Mol Ther. 2023 Jul 5;31(7):1920-1937. doi: 10.1016/j.ymthe.2023.03.024. Epub 2023 Mar 24.
8
The updated development of blood-based biomarkers for Huntington's disease.
J Neurol. 2023 May;270(5):2483-2503. doi: 10.1007/s00415-023-11572-x. Epub 2023 Jan 24.
9
Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders.
Cells. 2022 Nov 2;11(21):3476. doi: 10.3390/cells11213476.
10
Therapeutic Strategies in Huntington's Disease: From Genetic Defect to Gene Therapy.
Biomedicines. 2022 Aug 5;10(8):1895. doi: 10.3390/biomedicines10081895.

本文引用的文献

1
Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease.
Cell. 2015 Jul 30;162(3):516-26. doi: 10.1016/j.cell.2015.07.003.
2
Ubiquitin: a potential cerebrospinal fluid progression marker in Huntington's disease.
Eur J Neurol. 2015 Oct;22(10):1378-84. doi: 10.1111/ene.12750. Epub 2015 Jun 13.
3
Multivariate clustering of progression profiles reveals different depression patterns in prodromal Huntington disease.
Neuropsychology. 2015 Nov;29(6):949-60. doi: 10.1037/neu0000199. Epub 2015 May 25.
4
Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling.
Mol Neurobiol. 2016 Jul;53(5):2944-2953. doi: 10.1007/s12035-015-9188-0. Epub 2015 May 5.
5
Making (anti-) sense out of huntingtin levels in Huntington disease.
Mol Neurodegener. 2015 Apr 28;10:21. doi: 10.1186/s13024-015-0018-7.
6
Delivery of episomal vectors into primary cells by means of commercial transfection reagents.
Biochem Biophys Res Commun. 2015 May 29;461(2):348-53. doi: 10.1016/j.bbrc.2015.04.037. Epub 2015 Apr 15.
7
Huntington's disease: looking beyond the movement disorder.
Adv Psychosom Med. 2015;34:135-42. doi: 10.1159/000369111. Epub 2015 Mar 30.
8
Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy?
Trends Genet. 2015 Apr;31(4):177-86. doi: 10.1016/j.tig.2015.02.003. Epub 2015 Mar 2.
10
Potential function for the Huntingtin protein as a scaffold for selective autophagy.
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16889-94. doi: 10.1073/pnas.1420103111. Epub 2014 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验