Suppr超能文献

对多个个体进行联合估计可改善基于动物运动数据的行为状态推断。

Joint estimation over multiple individuals improves behavioural state inference from animal movement data.

作者信息

Jonsen Ian

机构信息

Macquarie University, Department of Biological Sciences, Sydney, NSW, 2109, Australia.

出版信息

Sci Rep. 2016 Feb 8;6:20625. doi: 10.1038/srep20625.

Abstract

State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.

摘要

当对多个个体进行推断时,状态空间模型提供了一种强大的方法来将个体运动行为的推断扩展到种群层面。在此,我展示了一种假设个体共享相同运动参数的联合估计方法如何能够改进与不同运动过程相关的行为状态的推断。我使用具有已知行为状态的模拟运动路径,来比较一个在其他方面相同的状态空间模型的非分层估计和联合估计公式之间的估计误差。行为状态估计误差受到表征行为状态的运动模式之间相似程度的强烈影响,当不同状态之间的运动差异很大时,误差较小。对于具有重尾阿戈斯定位误差的模拟数据,联合估计模型相对于非分层模型改进了行为状态估计。当应用于来自10只威德尔海豹的阿戈斯遥测数据集时,非分层模型对大多数个体估计出高度不确定的行为状态转换概率,而联合估计模型产生的不确定性则显著较小。联合估计模型能更好地解析所有海豹的行为状态序列。分层或联合估计模型应该是从动物运动数据估计行为状态的首选方法,尤其是当位置数据容易出错时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c789/4745009/2129d71f66a5/srep20625-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验