Sui Zhining, Li Ziyi, Sun Wei
Department of Biostatistics and Computational Biology, University of Rochester, 265 Crittenden Blvd. Rochester, 14642, NY, USA.
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, 77030, TX, USA.
bioRxiv. 2024 Aug 7:2024.08.05.606654. doi: 10.1101/2024.08.05.606654.
Digital pathology is a rapidly advancing field where deep learning methods can be employed to extract meaningful imaging features. However, the efficacy of training deep learning models is often hindered by the scarcity of annotated pathology images, particularly images with detailed annotations for small image patches or tiles. To overcome this challenge, we propose an innovative approach that leverages paired spatially resolved transcriptomic data to annotate pathology images. We demonstrate the feasibility of this approach and introduce a novel transfer-learning neural network model, STpath (Spatial Transcriptomics and pathology images), designed to predict cell type proportions or classify tumor microenvironments. Our findings reveal that the features from pre-trained deep learning models are associated with cell type identities in pathology image patches. Evaluating STpath using three distinct breast cancer datasets, we observe its promising performance despite the limited training data. STpath excels in samples with variable cell type proportions and high-resolution pathology images. As the influx of spatially resolved transcriptomic data continues, we anticipate ongoing updates to STpath, evolving it into an invaluable AI tool for assisting pathologists in various diagnostic tasks.
数字病理学是一个快速发展的领域,在这个领域中可以采用深度学习方法来提取有意义的成像特征。然而,训练深度学习模型的效果常常受到标注病理学图像稀缺的阻碍,特别是缺乏针对小图像块或切片的详细标注的图像。为了克服这一挑战,我们提出了一种创新方法,利用配对的空间分辨转录组数据来标注病理学图像。我们证明了这种方法的可行性,并引入了一种新颖的迁移学习神经网络模型STpath(空间转录组学与病理学图像),该模型旨在预测细胞类型比例或对肿瘤微环境进行分类。我们的研究结果表明,预训练深度学习模型的特征与病理学图像块中的细胞类型特征相关。使用三个不同的乳腺癌数据集对STpath进行评估,我们发现尽管训练数据有限,但其表现令人期待。STpath在细胞类型比例可变和高分辨率病理学图像的样本中表现出色。随着空间分辨转录组数据的不断涌入,我们预计STpath将持续更新,发展成为一种在各种诊断任务中协助病理学家的宝贵人工智能工具。