Aoki Yasunori, Nordgren Rikard, Hooker Andrew C
Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
Department of Mathematics, Uppsala University, Uppsala, Sweden.
AAPS J. 2016 Mar;18(2):505-18. doi: 10.1208/s12248-016-9866-5. Epub 2016 Feb 8.
As the importance of pharmacometric analysis increases, more and more complex mathematical models are introduced and computational error resulting from computational instability starts to become a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix. Roughly speaking, the method reparameterises the model with a linear combination of the original model parameters so that the Hessian matrix of the likelihood of the reparameterised model becomes close to an identity matrix. This approach will reduce the influence of computational error, for example rounding error, to the final computational result. We present numerical experiments demonstrating that the stabilisation of the computation using the proposed method can recover failed variance-covariance matrix computations, and reveal non-identifiability of the model parameters.
随着药代动力学分析重要性的增加,越来越多复杂的数学模型被引入,而计算不稳定性导致的计算误差开始成为分析中的瓶颈。我们提出一种用于药代动力学分析中非线性混合效应模型的预处理方法,以稳定方差协方差矩阵的计算。粗略地说,该方法用原始模型参数的线性组合对模型进行重新参数化,使得重新参数化模型的似然函数的海森矩阵接近单位矩阵。这种方法将减少计算误差(例如舍入误差)对最终计算结果的影响。我们给出了数值实验,证明使用所提出的方法进行计算稳定可以恢复失败的方差协方差矩阵计算,并揭示模型参数的不可识别性。