Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States of America.
These authors contributed equally.
J Neural Eng. 2021 Aug 18;18(4). doi: 10.1088/1741-2552/ac1984.
Intracranial neural recordings and electrical stimulation are tools used in an increasing range of applications, including intraoperative clinical mapping and monitoring, therapeutic neuromodulation, and brain computer interface control and feedback. However, many of these applications suffer from a lack of spatial specificity and localization, both in terms of sensed neural signal and applied stimulation. This stems from limited manufacturing processes of commercial-off-the-shelf (COTS) arrays unable to accommodate increased channel density, higher channel count, and smaller contact size.Here, we describe a manufacturing and assembly approach using thin-film microfabrication for 32-channel high density subdural micro-electrocorticography (ECoG) surface arrays (contacts 1.2 mm diameter, 2 mm pitch) and intracranial electroencephalography (iEEG) depth arrays (contacts 0.5 mm × 1.5 mm, pitch 0.8 mm × 2.5 mm). Crucially, we tackle the translational hurdle and test these arrays during intraoperative studies conducted in four humans under regulatory approval.We demonstrate that the higher-density contacts provide additional unique information across the recording span compared to the density of COTS arrays which typically have electrode pitch of 8 mm or greater; 4 mm in case of specially ordered arrays. Our intracranial stimulation study results reveal that refined spatial targeting of stimulation elicits evoked potentials with differing spatial spread.Thin-film,ECoG and iEEG depth arrays offer a promising substrate for advancing a number of clinical and research applications reliant on high-resolution neural sensing and intracranial stimulation.
颅内神经记录和电刺激是在越来越多的应用中使用的工具,包括术中临床绘图和监测、治疗性神经调节以及脑机接口控制和反馈。然而,这些应用中的许多都存在空间特异性和定位不足的问题,无论是在感知神经信号还是应用刺激方面。这源于商业现货 (COTS) 阵列的制造工艺有限,无法适应增加的通道密度、更高的通道计数和更小的接触尺寸。在这里,我们描述了一种使用薄膜微制造技术的制造和组装方法,用于制造 32 通道高密度硬膜下微脑电描记术 (ECoG) 表面阵列 (接触直径 1.2 毫米,间距 2 毫米) 和颅内脑电图 (iEEG) 深度阵列 (接触 0.5 毫米×1.5 毫米,间距 0.8 毫米×2.5 毫米)。至关重要的是,我们解决了转化障碍,并在四名经监管机构批准进行的术中研究中测试了这些阵列。我们证明,与 COTS 阵列的密度相比,高密度接触在记录范围内提供了额外的独特信息,COTS 阵列的电极间距通常为 8 毫米或更大;在特别订购的阵列中,间距为 4 毫米。我们的颅内刺激研究结果表明,刺激的精细空间靶向会引起具有不同空间传播的诱发电位。薄膜、ECoG 和 iEEG 深度阵列为许多依赖于高分辨率神经感应和颅内刺激的临床和研究应用提供了有前途的基础。