Suppr超能文献

用于感知和刺激的 ECoG 和 iEEG 深度阵列的薄膜微制造和术中测试。

Thin-film microfabrication and intraoperative testing ofECoG and iEEG depth arrays for sense and stimulation.

机构信息

Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States of America.

These authors contributed equally.

出版信息

J Neural Eng. 2021 Aug 18;18(4). doi: 10.1088/1741-2552/ac1984.

Abstract

Intracranial neural recordings and electrical stimulation are tools used in an increasing range of applications, including intraoperative clinical mapping and monitoring, therapeutic neuromodulation, and brain computer interface control and feedback. However, many of these applications suffer from a lack of spatial specificity and localization, both in terms of sensed neural signal and applied stimulation. This stems from limited manufacturing processes of commercial-off-the-shelf (COTS) arrays unable to accommodate increased channel density, higher channel count, and smaller contact size.Here, we describe a manufacturing and assembly approach using thin-film microfabrication for 32-channel high density subdural micro-electrocorticography (ECoG) surface arrays (contacts 1.2 mm diameter, 2 mm pitch) and intracranial electroencephalography (iEEG) depth arrays (contacts 0.5 mm × 1.5 mm, pitch 0.8 mm × 2.5 mm). Crucially, we tackle the translational hurdle and test these arrays during intraoperative studies conducted in four humans under regulatory approval.We demonstrate that the higher-density contacts provide additional unique information across the recording span compared to the density of COTS arrays which typically have electrode pitch of 8 mm or greater; 4 mm in case of specially ordered arrays. Our intracranial stimulation study results reveal that refined spatial targeting of stimulation elicits evoked potentials with differing spatial spread.Thin-film,ECoG and iEEG depth arrays offer a promising substrate for advancing a number of clinical and research applications reliant on high-resolution neural sensing and intracranial stimulation.

摘要

颅内神经记录和电刺激是在越来越多的应用中使用的工具,包括术中临床绘图和监测、治疗性神经调节以及脑机接口控制和反馈。然而,这些应用中的许多都存在空间特异性和定位不足的问题,无论是在感知神经信号还是应用刺激方面。这源于商业现货 (COTS) 阵列的制造工艺有限,无法适应增加的通道密度、更高的通道计数和更小的接触尺寸。在这里,我们描述了一种使用薄膜微制造技术的制造和组装方法,用于制造 32 通道高密度硬膜下微脑电描记术 (ECoG) 表面阵列 (接触直径 1.2 毫米,间距 2 毫米) 和颅内脑电图 (iEEG) 深度阵列 (接触 0.5 毫米×1.5 毫米,间距 0.8 毫米×2.5 毫米)。至关重要的是,我们解决了转化障碍,并在四名经监管机构批准进行的术中研究中测试了这些阵列。我们证明,与 COTS 阵列的密度相比,高密度接触在记录范围内提供了额外的独特信息,COTS 阵列的电极间距通常为 8 毫米或更大;在特别订购的阵列中,间距为 4 毫米。我们的颅内刺激研究结果表明,刺激的精细空间靶向会引起具有不同空间传播的诱发电位。薄膜、ECoG 和 iEEG 深度阵列为许多依赖于高分辨率神经感应和颅内刺激的临床和研究应用提供了有前途的基础。

相似文献

8
10
Progress in the Field of Micro-Electrocorticography.微脑电图学领域的进展
Micromachines (Basel). 2019 Jan 17;10(1):62. doi: 10.3390/mi10010062.

本文引用的文献

4
Intracranial EEG in the 21st Century.21世纪的颅内脑电图
Epilepsy Curr. 2020 Jul;20(4):180-188. doi: 10.1177/1535759720934852. Epub 2020 Jul 17.
8
Of Man and Mice: Translational Research in Neurotechnology.人与鼠:神经技术转化研究。
Neuron. 2020 Jan 8;105(1):12-15. doi: 10.1016/j.neuron.2019.11.030.
9
Biocompatibility of Polyimides: A Mini-Review.聚酰亚胺的生物相容性:一篇综述短文
Materials (Basel). 2019 Sep 27;12(19):3166. doi: 10.3390/ma12193166.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验