Institut Quimic de Sarria, Universitat Ramon Llull , Barcelona 08022, Spain.
Department of Chemistry, University of Calgary , Alberta AB T2N 1N4, Canada.
J Am Chem Soc. 2016 Mar 2;138(8):2762-8. doi: 10.1021/jacs.5b12704. Epub 2016 Feb 22.
Herein, we synthesized a series of 10 core-shell silver-silica nanoparticles with a photosensitizer, Rose Bengal, tethered to their surface. Each nanoparticle possesses an identical silver core of about 67 nm, but presents a different silica shell thickness ranging from 5 to 100 nm. These hybrid plasmonic nanoparticles thus afford a plasmonic nanostructure platform with a source of singlet oxygen ((1)O2) at a well-defined distance from the metallic core. Via time-resolved and steady state spectroscopic techniques, we demonstrate the silver core exerts a dual role of enhancing both the production of (1)O2, through enhanced absorption of light, and its radiative decay, which in turn boosts (1)O2 phosphorescence emission to a greater extent. Furthermore, we show both the production and emission of (1)O2 in vitro to be dependent on proximity to the plasmonic nanostructure. Our results clearly exhibit three distinct regimes as the plasmonic nanostructure moves apart from the (1)O2 source, with a greater enhancement for silica shell thicknesses ranging between 10 and 20 nm. Moreover, these hybrid plasmonic nanoparticles can be delivered to both Gram-positive and Gram-negative bacteria boosting both photoantibacterial activity and detection limit of (1)O2 in cells.
在此,我们合成了一系列具有光敏剂 Rose Bengal 的 10 个核壳型银硅纳米粒子,将其连接到表面。每个纳米粒子都具有约 67nm 的相同银核,但具有不同的二氧化硅壳厚度,范围从 5nm 至 100nm。这些混合等离子体纳米粒子因此提供了一种等离子体纳米结构平台,其中单线态氧 ((1)O2) 位于离金属核确定距离的位置。通过时间分辨和稳态光谱技术,我们证明了银核通过增强光吸收和辐射衰减,起到了增强 (1)O2 产生的双重作用,这反过来又更大程度地促进了 (1)O2 磷光发射。此外,我们表明,在体外 (1)O2 的产生和发射都依赖于与等离子体纳米结构的接近程度。我们的结果清楚地显示了三个不同的区域,随着等离子体纳米结构与 (1)O2 源分离,当二氧化硅壳厚度在 10nm 至 20nm 之间时,增强效果更为显著。此外,这些混合等离子体纳米粒子可以递送到革兰氏阳性和革兰氏阴性细菌中,提高光抗菌活性和细胞中 (1)O2 的检测限。