Suppr超能文献

钠钙玻璃上自发且强烈的多层石墨烯n型掺杂及其在石墨烯-半导体结中的应用。

Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions.

作者信息

Dissanayake D M N M, Ashraf A, Dwyer D, Kisslinger K, Zhang L, Pang Y, Efstathiadis H, Eisaman M D

机构信息

Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY 11973, USA.

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Sci Rep. 2016 Feb 12;6:21070. doi: 10.1038/srep21070.

Abstract

Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10(12) e/cm(2) or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene's properties. Here we demonstrate strong (1.33 × 10(13) e/cm(2)), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 10(13) e/cm(2) when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. The ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.

摘要

可扩展且低成本的石墨烯掺杂能够改善微电子、光电子和能量存储等广泛领域的技术。虽然实现强p型掺杂相对简单,但诸如化学掺杂等非静电方法对石墨烯进行n型掺杂所产生的电子密度为9.5×10¹² e/cm²或更低。此外,化学掺杂容易降解,并且会对本征石墨烯的性能产生不利影响。在此,我们通过来自钠的表面转移掺杂,在钠钙玻璃基板上实现了强(1.33×10¹³ e/cm²)、稳定且自发的石墨烯n型掺杂,无需任何外部化学、高温或真空工艺。值得注意的是,当石墨烯转移到已沉积在钠钙玻璃上的p型铜铟镓硒(CIGS)半导体上时,通过扩散到CIGS表面的钠原子进行表面转移掺杂,n型掺杂达到2.11×10¹³ e/cm²。利用这种效应,我们展示了一个理想因子为1.21且具有强光响应的n型石墨烯/p型半导体肖特基结。在低成本、行业标准材料上实现强而持久的石墨烯n型掺杂的能力,为诸如光电探测器、光伏器件、传感器、电池和超级电容器等全新一类基于石墨烯的器件铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/541b/4751575/31601c09c8f9/srep21070-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验