Becher B, Müller V
Institut für Mikrobiologie, Georg-August-Universität, Göttingen, Germany.
J Bacteriol. 1994 May;176(9):2543-50. doi: 10.1128/jb.176.9.2543-2550.1994.
Methanosarcina mazei Gö1 couples the methyl transfer from methyl-tetrahydromethanopterin to 2-mercaptoethanesulfonate (coenzyme M) with the generation of an electrochemical sodium ion gradient (delta mu Na+) and the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate with the generation of an electrochemical proton gradient (delta muH+). Experiments with washed inverted vesicles were performed to investigate whether both ion gradients are used directly for the synthesis of ATP. delta mu Na+ and delta mu H+ were both able to drive the synthesis of ATP in the vesicular system. ATP synthesis driven by heterodisulfide reduction (delta mu H+) or an artificial delta pH was inhibited by the protonophore SF6847 but not by the sodium ionophore ETH157, whereas ETH157 but not SF6847 inhibited ATP synthesis driven by a chemical sodium ion gradient (delta pNa) as well as the methyl transfer reaction (delta mu Na+). Inhibition of the Na+/H+ antiporter led to a stimulation of ATP synthesis driven by the methyl transfer reaction (delta mu Na+), as well as by delta pNa. These experiments indicate that delta mu Na+ and delta mu H+ drive the synthesis of ATP via an Na(+)- and an H(+)-translocating ATP synthase, respectively. Inhibitor studies were performed to elucidate the nature of the ATP synthase(s) involved. delta pH-driven ATP synthesis was specifically inhibited by bafilomycin A1, whereas delta pNa-driven ATP synthesis was exclusively inhibited by 7-chloro-4-nitro-2-oxa-1,3-diazole, azide, and venturicidin. These results are evidence for the presence of an F(1)F(0)-ATP synthase in addition to the A(1)A(0)-ATP synthase in membranes of M. Mazei Gö1 and suggest that the F(1)F(0)-type enzyme is an Na+-translocating ATP synthase, whereas the A(1)A(0)-ATP synthase uses H+ as the coupling ion.
马氏甲烷八叠球菌Gö1将甲基从甲基四氢甲蝶呤转移至2-巯基乙烷磺酸盐(辅酶M)的过程与电化学钠离子梯度(ΔμNa⁺)的产生相偶联,同时将辅酶M和7-巯基庚酰苏氨酸磷酸的异二硫化物还原与电化学质子梯度(ΔμH⁺)的产生相偶联。进行了洗涤后的反向囊泡实验,以研究这两种离子梯度是否直接用于ATP的合成。ΔμNa⁺和ΔμH⁺都能够驱动囊泡系统中ATP的合成。由异二硫化物还原(ΔμH⁺)或人工ΔpH驱动的ATP合成受到质子载体SF6847的抑制,但不受钠离子载体ETH157的抑制,而ETH157而非SF6847抑制了由化学钠离子梯度(ΔpNa)驱动的ATP合成以及甲基转移反应(ΔμNa⁺)。抑制Na⁺/H⁺反向转运体导致由甲基转移反应(ΔμNa⁺)以及ΔpNa驱动的ATP合成受到刺激。这些实验表明,ΔμNa⁺和ΔμH⁺分别通过一种Na⁺转运型ATP合酶和一种H⁺转运型ATP合酶驱动ATP的合成。进行了抑制剂研究以阐明所涉及的ATP合酶的性质。由ΔpH驱动的ATP合成受到巴弗洛霉素A1的特异性抑制,而由ΔpNa驱动的ATP合成仅受到7-氯-4-硝基-2-恶唑-1,3-二氮杂环戊二烯、叠氮化物和venturicidin的抑制。这些结果证明在马氏甲烷八叠球菌Gö1的膜中除了存在A₁A₀-ATP合酶外还存在F₁F₀-ATP合酶,并表明F₁F₀型酶是一种Na⁺转运型ATP合酶,而A₁A₀-ATP合酶使用H⁺作为偶联离子。