Sun Wanqing, Quan Nanhu, Wang Lin, Yang Hui, Chu Dongyang, Liu Quan, Zhao Xuezhong, Leng Jiyan, Li Ji
*The First Affiliated Hospital of Jilin University, Changchun 130000, China Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216.
Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216.
Toxicol Sci. 2016 May;151(1):193-203. doi: 10.1093/toxsci/kfw035. Epub 2016 Feb 15.
Pyruvate dehydrogenase (PDH) plays a key role in aerobic energy metabolism and occupies a central crossroad between glycolysis and the tricarboxylic acid cycle. We generated inducible cardiac-specific PDH E1α knockout (CreER(T2)-PDH(flox/flox)) mice that demonstrated a high mortality rate. It was hypothesized that PDH modulating cardiac glucose metabolism is crucial for heart functions under normal physiological and/or stress conditions. The myocardial infarction was conducted by a ligation of the left anterior descending coronary arteries. Cardiac PDH E1α deficiency caused large myocardial infarcts size and macrophage infiltration in the hearts (P < .01 vs wild-type [WT]). Wheat germ agglutinin and Masson trichrome staining revealed significantly increased hypertrophy and fibrosis in PDH E1α-deficient hearts (P < .05 vs WT). Measurements of heart substrate metabolism in an ex vivo working heart perfusion system demonstrated a significant impairment of glucose oxidation in PDH E1α-deficient hearts during ischemia/reperfusion (P < .05 vs WT). Dichloroacetate, a PDH activator, increased glucose oxidation in WT hearts during ischemia/reperfusion and reduced myocardial infarct size in WT, but not in PDH E1α-deficient hearts. Immunoblotting results demonstrated that cardiac PDH E1α deficiency leads to an impaired ischemic AMP-activated protein kinase activation through Sestrin2-liver kinase B1 interaction which is responsible for an increased susceptibility of PDH E1α-deficient heart to ischemic insults. Thus, cardiac PDH E1α deficiency impairs ischemic AMP-activated protein kinase signaling and sensitizes hearts to the toxicological actions of ischemic stress.
丙酮酸脱氢酶(PDH)在有氧能量代谢中起关键作用,处于糖酵解和三羧酸循环的核心交叉点。我们构建了可诱导的心脏特异性PDH E1α基因敲除(CreER(T2)-PDH(flox/flox))小鼠,这些小鼠表现出高死亡率。据推测,在正常生理和/或应激条件下,调节心脏葡萄糖代谢的PDH对心脏功能至关重要。通过结扎左冠状动脉前降支进行心肌梗死实验。心脏PDH E1α缺乏导致心脏出现大面积心肌梗死和巨噬细胞浸润(与野生型[WT]相比,P < .01)。小麦胚芽凝集素和Masson三色染色显示,PDH E1α缺乏的心脏中肥大和纤维化显著增加(与WT相比,P < .05)。在离体工作心脏灌注系统中对心脏底物代谢的测量表明,在缺血/再灌注期间,PDH E1α缺乏的心脏中葡萄糖氧化显著受损(与WT相比,P < .05)。二氯乙酸是一种PDH激活剂,在缺血/再灌注期间可增加WT心脏中的葡萄糖氧化,并减小WT心脏的心肌梗死面积,但对PDH E1α缺乏的心脏无效。免疫印迹结果表明,心脏PDH E1α缺乏通过Sestrin2-肝激酶B1相互作用导致缺血时AMP激活的蛋白激酶激活受损,这导致PDH E1α缺乏的心脏对缺血损伤的易感性增加。因此,心脏PDH E1α缺乏会损害缺血时AMP激活的蛋白激酶信号传导,并使心脏对缺血应激的毒理学作用敏感。