Iwanami Nozomi, Nakamura Yuri, Satoh Takunori, Liu Ziguang, Satoh Akiko K
Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan.
Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China.
PLoS Genet. 2016 Feb 18;12(2):e1005828. doi: 10.1371/journal.pgen.1005828. eCollection 2016 Feb.
Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network-recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner.
极化膜运输对于细胞多个质膜结构域的构建和维持至关重要。高度极化的果蝇光感受器是研究极化运输的极佳模型。果蝇视网膜的单个横切面包含许多光感受器,其具有3个明显分化的质膜结构域:微绒毛、柄和基底外侧膜。全基因组高通量甲磺酸乙酯筛选,随后进行精确的免疫组织化学分析,鉴定出一个具有罕见表型的突变体,其特征是两个顶端运输途径缺失而基底外侧运输正常。使用全基因组重测序和单核苷酸多态性图谱进行快速基因鉴定,确定Rab6的一个无义突变是导致顶端特异性运输缺陷的原因。利用蓝光诱导的发色团供应对主要微绒毛蛋白Rh1的运输进行详细分析,确定Rab6对于Rh1从高尔基体单位输出至关重要。Rab6主要从反式高尔基体网络分布到一个与高尔基体相关的Rab11阳性区室,该区域可能回收内体或运输小泡至再循环内体。此外,Rab6效应器Rich是Rab6在反式高尔基体网络中募集所必需的。而且,Rich基因敲除突变体模拟了Rab6基因敲除突变体的表型,表明Rich作为Rab6的鸟嘌呤核苷酸交换因子发挥作用。这些结果共同表明,Rab6和Rich对于运往两个顶端结构域的货物从反式高尔基体网络到再循环内体的运输至关重要。然而,基底外侧货物以Rab6非依赖的方式从反式高尔基体网络进行分类和输出。