Suppr超能文献

Rab6在果蝇光感受器的多种顶端运输途径中是必需的,但在基底外侧运输途径中并非必需。

Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors.

作者信息

Iwanami Nozomi, Nakamura Yuri, Satoh Takunori, Liu Ziguang, Satoh Akiko K

机构信息

Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan.

Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China.

出版信息

PLoS Genet. 2016 Feb 18;12(2):e1005828. doi: 10.1371/journal.pgen.1005828. eCollection 2016 Feb.

Abstract

Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network-recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner.

摘要

极化膜运输对于细胞多个质膜结构域的构建和维持至关重要。高度极化的果蝇光感受器是研究极化运输的极佳模型。果蝇视网膜的单个横切面包含许多光感受器,其具有3个明显分化的质膜结构域:微绒毛、柄和基底外侧膜。全基因组高通量甲磺酸乙酯筛选,随后进行精确的免疫组织化学分析,鉴定出一个具有罕见表型的突变体,其特征是两个顶端运输途径缺失而基底外侧运输正常。使用全基因组重测序和单核苷酸多态性图谱进行快速基因鉴定,确定Rab6的一个无义突变是导致顶端特异性运输缺陷的原因。利用蓝光诱导的发色团供应对主要微绒毛蛋白Rh1的运输进行详细分析,确定Rab6对于Rh1从高尔基体单位输出至关重要。Rab6主要从反式高尔基体网络分布到一个与高尔基体相关的Rab11阳性区室,该区域可能回收内体或运输小泡至再循环内体。此外,Rab6效应器Rich是Rab6在反式高尔基体网络中募集所必需的。而且,Rich基因敲除突变体模拟了Rab6基因敲除突变体的表型,表明Rich作为Rab6的鸟嘌呤核苷酸交换因子发挥作用。这些结果共同表明,Rab6和Rich对于运往两个顶端结构域的货物从反式高尔基体网络到再循环内体的运输至关重要。然而,基底外侧货物以Rab6非依赖的方式从反式高尔基体网络进行分类和输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1681/4758697/90b814952122/pgen.1005828.g001.jpg

相似文献

1
Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors.
PLoS Genet. 2016 Feb 18;12(2):e1005828. doi: 10.1371/journal.pgen.1005828. eCollection 2016 Feb.
2
Rab6 functions in polarized transport in Drosophila photoreceptors.
Fly (Austin). 2016 Jul 2;10(3):123-7. doi: 10.1080/19336934.2016.1182273. Epub 2016 Apr 26.
3
Parcas is the predominant Rab11-GEF for rhodopsin transport in photoreceptors.
J Cell Sci. 2019 Aug 7;132(15):jcs231431. doi: 10.1242/jcs.231431.
4
Stratum is required for both apical and basolateral transport through stable expression of Rab10 and Rab35 in photoreceptors.
Mol Biol Cell. 2022 Sep 1;33(10):br17. doi: 10.1091/mbc.E21-12-0596. Epub 2022 Jun 29.
5
Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors.
Development. 2005 Apr;132(7):1487-97. doi: 10.1242/dev.01704. Epub 2005 Feb 23.
7
Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells.
J Cell Biol. 2005 May 23;169(4):635-46. doi: 10.1083/jcb.200410081. Epub 2005 May 16.
8
Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin.
Mol Biol Cell. 2005 Apr;16(4):1744-55. doi: 10.1091/mbc.e04-10-0867. Epub 2005 Feb 2.
9
The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells.
PLoS Genet. 2015 Oct 28;11(10):e1005578. doi: 10.1371/journal.pgen.1005578. eCollection 2015 Oct.
10
Rab6 regulation of rhodopsin transport in Drosophila.
J Biol Chem. 1998 Aug 7;273(32):20425-30. doi: 10.1074/jbc.273.32.20425.

引用本文的文献

2
Comprehensive study of SNAREs involved in the post-Golgi transport in photoreceptors.
Front Cell Dev Biol. 2024 Dec 10;12:1442192. doi: 10.3389/fcell.2024.1442192. eCollection 2024.
4
Molecular mechanisms of polarized transport to the apical plasma membrane.
Front Cell Dev Biol. 2024 Sep 26;12:1477173. doi: 10.3389/fcell.2024.1477173. eCollection 2024.
5
The GTPase RAB6 is required for stem cell maintenance and cell migration in the gut epithelium.
Development. 2024 Nov 1;151(21). doi: 10.1242/dev.203038. Epub 2024 Oct 21.
6
Golgi clustering by the deficiency of COPI-SNARE in photoreceptors.
Front Cell Dev Biol. 2024 Sep 4;12:1442198. doi: 10.3389/fcell.2024.1442198. eCollection 2024.
7
Spatial arrangement, polarity, and posttranslational modifications of the microtubule system in the Drosophila eye.
Cell Tissue Res. 2024 Nov;398(2):123-137. doi: 10.1007/s00441-024-03914-6. Epub 2024 Aug 17.
9
Role of BicDR in bristle shaft construction and support of BicD functions.
J Cell Sci. 2024 Jan 15;137(2). doi: 10.1242/jcs.261408. Epub 2024 Jan 31.
10
Application of Fluorescent Proteins for Functional Dissection of the Visual System.
Int J Mol Sci. 2021 Aug 19;22(16):8930. doi: 10.3390/ijms22168930.

本文引用的文献

1
Intestinal apical polarity mediates regulation of TORC1 by glucosylceramide in C. elegans.
Genes Dev. 2015 Jun 15;29(12):1218-23. doi: 10.1101/gad.263483.115.
2
Endogenously tagged rab proteins: a resource to study membrane trafficking in Drosophila.
Dev Cell. 2015 May 4;33(3):351-65. doi: 10.1016/j.devcel.2015.03.022.
6
How Rab proteins determine Golgi structure.
Int Rev Cell Mol Biol. 2015;315:1-22. doi: 10.1016/bs.ircmb.2014.12.002. Epub 2015 Feb 7.
7
The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond.
Membranes (Basel). 2014 Nov 7;4(4):747-63. doi: 10.3390/membranes4040747.
8
Golgi compartmentation and identity.
Curr Opin Cell Biol. 2014 Aug;29:74-81. doi: 10.1016/j.ceb.2014.04.010. Epub 2014 May 17.
9
Cadherin 99C regulates apical expansion and cell rearrangement during epithelial tube elongation.
Development. 2014 May;141(9):1950-60. doi: 10.1242/dev.104166. Epub 2014 Apr 9.
10
Adaptor proteins involved in polarized sorting.
J Cell Biol. 2014 Jan 6;204(1):7-17. doi: 10.1083/jcb.201310021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验