Prezioso M, Merrikh Bayat F, Hoskins B, Likharev K, Strukov D
Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States.
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, United States.
Sci Rep. 2016 Feb 19;6:21331. doi: 10.1038/srep21331.
Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses - the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses ("spikes") in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor's conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2-x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors.
金属氧化物忆阻器因其出色的缩放前景,已成为人工突触硬件实现的有前途的候选者,而人工突触是高性能模拟神经形态网络的关键组件。由于一些先进的认知任务需要尖峰神经形态网络,该网络明确模拟生物神经系统中的单个神经脉冲(“尖峰”),因此忆阻突触支持尖峰时间依赖可塑性(STDP)至关重要。STDP实现的一个主要挑战是,与一些简单的可塑性模型不同,人工硬件突触中突触权重的基本变化不仅取决于突触前和突触后信号,还取决于初始权重(忆阻器的电导)值。在这里,我们首次通过实验证明了一种STDP行为,该行为可确保忆阻器平均电导的自适应,使可塑性稳定,即对器件的初始状态不敏感。实验是使用集成在12×12交叉阵列中的200纳米Al2O3/TiO2-x忆阻器进行 的。通过实验观察到的自适应STDP行为,已通过在一个具有随机尖峰序列输入的漏电积分发放神经元的简单系统中,使用忆阻器可塑性的紧凑模型对权重动态进行数值建模得到补充,该模型经过拟合以定量正确描述我们的忆阻器。