Suppr超能文献

利用中性原子实现量子增强的毫米波到光的转换。

Quantum-enabled millimetre wave to optical transduction using neutral atoms.

机构信息

The Department of Physics, The James Franck Institute and The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.

The Department of Physics, Stanford University, Stanford, CA, USA.

出版信息

Nature. 2023 Mar;615(7953):614-619. doi: 10.1038/s41586-023-05740-2. Epub 2023 Mar 22.

Abstract

Early experiments with transiting circular Rydberg atoms in a superconducting resonator laid the foundations of modern cavity and circuit quantum electrodynamics, and helped explore the defining features of quantum mechanics such as entanglement. Whereas ultracold atoms and superconducting circuits have since taken rather independent paths in the exploration of new physics, taking advantage of their complementary strengths in an integrated system enables access to fundamentally new parameter regimes and device capabilities. Here we report on such a system, coupling an ensemble of cold Rb atoms simultaneously to an, as far as we are aware, first-of-its-kind optically accessible, three-dimensional superconducting resonator and a vibration-suppressed optical cavity in a cryogenic (5 K) environment. To demonstrate the capabilities of this platform, and with an eye towards quantum networking, we leverage the strong coupling between Rydberg atoms and the superconducting resonator to implement a quantum-enabled millimetre wave (mmwave) photon to optical photon transducer. We measured an internal conversion efficiency of 58(11)%, a conversion bandwidth of 360(20) kHz and added thermal noise of 0.6 photons, in agreement with a parameter-free theory. Extensions of this technique will allow near-unity efficiency transduction in both the mmwave and microwave regimes. More broadly, our results open a new field of hybrid mmwave/optical quantum science, with prospects for operation deep in the strong coupling regime for efficient generation of metrologically or computationally useful entangled states and quantum simulation/computation with strong non-local interactions.

摘要

早期在超导谐振器中对传输的圆形里德堡原子的实验为现代腔和电路量子电动力学奠定了基础,并帮助探索了量子力学的定义特征,如纠缠。虽然超冷原子和超导电路此后在探索新物理方面采取了相当独立的路径,但在集成系统中利用它们的互补优势可以访问根本的新参数范围和器件能力。在这里,我们报告了这样一个系统,它将一组冷铷原子同时耦合到一个超导谐振器和一个在低温(5 K)环境中具有振动抑制的光学可访问的三维光学腔,就我们所知,这是第一个这样的系统。为了展示这个平台的能力,并着眼于量子网络,我们利用里德堡原子和超导谐振器之间的强耦合来实现一个量子增强的毫米波(mmwave)光子到光光子转换器。我们测量到 58(11)%的内部转换效率、360(20) kHz 的转换带宽和 0.6 个光子的附加热噪声,与无参数理论一致。该技术的扩展将允许在 mmwave 和微波频段实现近 100%的效率转换。更广泛地说,我们的结果开辟了一个混合 mmwave/光学量子科学的新领域,具有在强耦合 regime 中高效产生计量或计算有用的纠缠态以及具有强非局域相互作用的量子模拟/计算的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验