Suppr超能文献

利用单神经元基因组学解析大脑中的突变率

Resolving rates of mutation in the brain using single-neuron genomics.

作者信息

Evrony Gilad D, Lee Eunjung, Park Peter J, Walsh Christopher A

机构信息

Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, United States.

Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.

出版信息

Elife. 2016 Feb 22;5:e12966. doi: 10.7554/eLife.12966.

Abstract

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.

摘要

体细胞突变是否为脑细胞带来功能多样性是一个长期存在的问题。单神经元基因组学能够直接测量人类大脑中的体细胞突变率,并有望回答这个问题。最近一项研究(厄普顿等人,2015年)报告称,海马体和大脑皮层中体细胞LINE-1元件(L1)逆转录转座率很高,这可能对正常脑功能产生重大影响,并表明这些事件优先影响对神经元功能重要的基因。我们发现了单细胞测序方法、生物信息学分析和验证方法中的一些问题,这些问题导致数千个假象被解释为体细胞突变事件。我们的重新分析支持每个细胞约0.2个事件的突变频率,这比报告的频率低约五十倍,证实L1元件在一些人类神经元中会发生移动,但表明L1镶嵌现象并非普遍存在。通过考虑所发现的挑战,我们为设计单细胞基因组学研究提供了基础和框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a771/4805530/2371b1d54a80/elife-12966-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验