Ferrari Raffaele, Forabosco Paola, Vandrovcova Jana, Botía Juan A, Guelfi Sebastian, Warren Jason D, Momeni Parastoo, Weale Michael E, Ryten Mina, Hardy John
Department of Molecular Neuroscience, Institute of Neurology, University College London, Russell Square House, 9-12 Russell Square House, London, WC1N 3BG, UK.
Istituto di Ricerca Genetica e Biomedica, Cittadella Universitaria di Cagliari, 09042, Monserrato, Sardinia, Italy.
Mol Neurodegener. 2016 Feb 24;11:21. doi: 10.1186/s13024-016-0085-4.
In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products.
Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses.
This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work.
在额颞叶痴呆(FTD)中,对于疾病发病机制所涉及的生物学和分子机制的理解严重不足。与FTD相关的异质性遗传特征表明,多种疾病机制可能促成了这种神经退行性疾病的发展。我们在此提出一种系统生物学方法,其目的在于:i)阐明可能与FTD发病机制相关的生物学过程,以及ii)识别FTD新的潜在风险因素。我们对来自101名无神经退行性疾病个体的微阵列表达数据进行了基因共表达网络分析,以探究与FTD相关的12个基因(MAPT、GRN、CHMP2B、CTSC、HLA - DRA、TMEM106B、C9orf72、VCP、UBQLN2、OPTN、TARDBP和FUS)在额叶和颞叶皮质中的区域特异性共表达模式,然后进行基因集富集和通路分析,并研究FTD基因产物已知的蛋白质 - 蛋白质相互作用体(PPI)。
基因共表达网络显示,几个FTD基因(如MAPT和GRN、CTSC和HLA - DRA、TMEM106B以及C9orf72、VCP、UBQLN2和OPTN)在额叶和颞叶皮质的相关模块中聚类。对此类模块的功能注释和通路分析表明,其富集于:i)DNA代谢,即转录调控、DNA保护和染色质重塑(MAPT和GRN模块);ii)免疫和溶酶体过程(CTSC和HLA - DRA模块),以及;iii)蛋白质代谢/分解代谢(C9orf72、VCP、UBQLN2和OPTN以及TMEM106B模块)。PPI分析支持了功能注释和通路分析的结果。
这项工作进一步刻画了已知的FTD基因,并阐述了它们与疾病的生物学相关性:我们不仅指出了由含FTD基因模块驱动的可能受影响的区域特异性生物学过程,还在FTD基因相互作用体中提出了新的潜在风险因素,作为在假设驱动的细胞生物学研究中进一步进行机制刻画的靶点。