Suppr超能文献

互锁石墨烯-普鲁士蓝杂化复合材料实现多功能电化学应用。

Interlocked graphene-Prussian blue hybrid composites enable multifunctional electrochemical applications.

机构信息

Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

出版信息

Biosens Bioelectron. 2017 Mar 15;89(Pt 1):570-577. doi: 10.1016/j.bios.2016.02.044. Epub 2016 Feb 17.

Abstract

There has been increasing interest recently in mixed-valence inorganic nanostructure functionalized graphene composites, represented by Prussian blue, because they can cost-effectively apply to biosensors and energy devices. In this work, we present a one-pot green method to synthesize interlocked graphene-Prussian Blue hybrid composites as high-performance materials for biosensors and supercapacitor electrodes. Given the fact that graphene oxide (GO) can act as an electron acceptor, we used iron(II) and glucose as co-reducing agents to reduce GO under mild reaction conditions without introducing toxic agents. High quality Prussian blue nanocubes with no or little coordinated water were generated simultaneously. Reduced graphene oxide (rGO) was thus functionalized by Prussian blue nanocubes via chemical bonding to form a kind of interlocked microstructure with high stability and good conductivity. The as-synthesized composites were tested for biosensing of hydrogen peroxide (HO) and as supercapacitor electrode materials. The specific capacitance of the microcomposite based electrodes can reach 428Fg, with good cycling stability. The microcomposite also displays high performance catalysis towards electroreduction of HO with a high sensitivity of 1.5AcmM.

摘要

最近,人们对混合价态无机纳米结构功能化石墨烯复合材料(以普鲁士蓝为例)越来越感兴趣,因为它们可以经济有效地应用于生物传感器和能源设备。在这项工作中,我们提出了一种一锅法绿色合成互锁石墨烯-普鲁士蓝杂化复合材料的方法,将其作为生物传感器和超级电容器电极的高性能材料。鉴于氧化石墨烯(GO)可以作为电子受体,我们使用铁(II)和葡萄糖作为共还原剂,在温和的反应条件下,无需引入有毒试剂,即可还原 GO。同时,还生成了具有无或少量配位水的高质量普鲁士蓝纳米立方体。因此,普鲁士蓝纳米立方体通过化学键合功能化还原氧化石墨烯(rGO),形成一种具有高稳定性和良好导电性的互锁微观结构。所合成的复合材料被测试用于过氧化氢(HO)的生物传感和超级电容器电极材料。基于微复合材料的电极的比电容可达到 428Fg,具有良好的循环稳定性。该微复合材料对 HO 的电化学还原也表现出高催化性能,灵敏度高达 1.5AcmM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验