Suppr超能文献

在具有受控管尺寸的水凝胶管状微环境中诱导小鼠神经干细胞的分化。

Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions.

机构信息

Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.

Takeuchi Biohybrid Innovation Project, Exploratory Research for Advanced Technology (ERATO), JST, Tokyo, Japan.

出版信息

Adv Healthc Mater. 2016 May;5(9):1104-11. doi: 10.1002/adhm.201500903. Epub 2016 Feb 25.

Abstract

In this paper, a tubular 3D microenvironment created in a calcium alginate hydrogel microtube with respect to the effect of scaffold dimensions on the differentiation of mouse neuronal stem cells (mNSCs) is evaluated. Five types of hydrogel microtubes with different core diameters (≈65-200 μm) and shell thicknesses (≈30-110 μm) are fabricated by using a double coaxial microfluidic device, and differentiation of encapsulated mNSCs is induced by changing the growth medium to the differentiation medium. The influence of the microtube geometries is examined by using quantitative real-time polymerase chain reaction and fluorescent immunocytochemistry. The analyses reveal that differences in microtube thickness within 30-110 μm affected the relative Tuj1 expression but do not affect the morphology of encapsulated mNSCs. The diameters of cores influence both the relative Tuj1 expression and morphology of the differentiated neurons. It is found that the tubular microenvironment with a core diameter of less than ≈100 μm contributes to forming highly viable and aligned neural tissue. The tubular microenvironment can provide an effective method for constructing microfiber-shaped neural tissues with geometrically controlled differentiation induction.

摘要

本文评价了在海藻酸钙水凝胶微管中构建管状 3D 微环境对小鼠神经干细胞(mNSCs)分化的影响,该微环境涉及支架尺寸的影响。使用双同轴微流控装置制备了五种不同核心直径(≈65-200μm)和壳层厚度(≈30-110μm)的水凝胶微管,并通过将生长培养基更换为分化培养基来诱导包封的 mNSCs 的分化。通过定量实时聚合酶链反应和荧光免疫细胞化学分析研究了微管几何形状的影响。分析表明,30-110μm 范围内的微管厚度差异会影响相对 Tuj1 表达,但不会影响包封的 mNSCs 的形态。核心的直径会影响分化神经元的相对 Tuj1 表达和形态。结果发现,核心直径小于≈100μm 的管状微环境有助于形成高活力且排列整齐的神经组织。管状微环境为构建具有几何形状控制分化诱导的微纤维状神经组织提供了一种有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验