The University of Western Ontario, London, ON, Canada; Digital Image Group (DIG), London, ON, Canada.
GE Healthcare, London, ON, Canada.
Med Image Anal. 2016 May;30:120-129. doi: 10.1016/j.media.2015.07.003. Epub 2015 Jul 26.
Direct estimation of cardiac ventricular volumes has become increasingly popular and important in cardiac function analysis due to its effectiveness and efficiency by avoiding an intermediate segmentation step. However, existing methods rely on either intensive user inputs or problematic assumptions. To realize the full capacities of direct estimation, this paper presents a general, fully learning-based framework for direct bi-ventricular volume estimation, which removes user inputs and unreliable assumptions. We formulate bi-ventricular volume estimation as a general regression framework which consists of two main full learning stages: unsupervised cardiac image representation learning by multi-scale deep networks and direct bi-ventricular volume estimation by random forests. By leveraging strengths of generative and discriminant learning, the proposed method produces high correlations of around 0.92 with ground truth by human experts for both the left and right ventricles using a leave-one-subject-out cross validation, and largely outperforms existing direct methods on a larger dataset of 100 subjects including both healthy and diseased cases with twice the number of subjects used in previous methods. More importantly, the proposed method can not only be practically used in clinical cardiac function analysis but also be easily extended to other organ volume estimation tasks.
直接估计心脏心室容积由于其有效性和效率,避免了中间的分割步骤,在心脏功能分析中变得越来越流行和重要。然而,现有的方法要么依赖于密集的用户输入,要么依赖于有问题的假设。为了充分发挥直接估计的能力,本文提出了一种通用的、完全基于学习的左、右心室直接容积估计框架,该框架消除了用户输入和不可靠的假设。我们将双心室容积估计公式化为一个通用的回归框架,该框架由两个主要的全学习阶段组成:多尺度深度网络的无监督心脏图像表示学习和通过随机森林进行直接双心室容积估计。通过利用生成式学习和判别式学习的优势,该方法在一个包括健康和患病病例的 100 个受试者的更大数据集上进行的Leave-one-subject-out 交叉验证中,对于左心室和右心室,其与人类专家的真实值之间的相关性都达到了 0.92 左右,并且大大优于以前方法两倍数量的受试者的现有直接方法。更重要的是,该方法不仅可以在临床心脏功能分析中实际使用,而且可以很容易地扩展到其他器官容积估计任务中。