Suppr超能文献

纤维网络放大主动应力。

Fiber networks amplify active stress.

作者信息

Ronceray Pierre, Broedersz Chase P, Lenz Martin

机构信息

Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France;

Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany; Lewis-Sigler Institute for Integrative Genomics and Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2827-32. doi: 10.1073/pnas.1514208113. Epub 2016 Feb 26.

Abstract

Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

摘要

大规模力的产生对于诸如细胞运动、胚胎发育和肌肉收缩等生物学功能至关重要。在这些过程中,由驱动蛋白在分子水平产生的力通过无序的纤维网络进行传递,从而产生大规模的主动应力。尽管这些纤维网络在宏观上已得到充分表征,但微观主动单元产生这种应力的机制尚不清楚。在此,我们从理论上研究了这些网络中的力传递。我们发现,局部主动单元附近的纤维集体屈曲会导致应力整流,进而实现强烈放大的各向同性收缩。这种应力放大因网络的无序性质而得到加强,但在主动单元高密度时会饱和。我们的预测与重构组织和肌动球蛋白网络的实验在定量上一致,并揭示了网络微观结构在塑造细胞和组织中的主动应力方面的作用。

相似文献

1
Fiber networks amplify active stress.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2827-32. doi: 10.1073/pnas.1514208113. Epub 2016 Feb 26.
2
Active multistage coarsening of actin networks driven by myosin motors.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9408-13. doi: 10.1073/pnas.1016616108. Epub 2011 May 18.
3
Contractile units in disordered actomyosin bundles arise from F-actin buckling.
Phys Rev Lett. 2012 Jun 8;108(23):238107. doi: 10.1103/PhysRevLett.108.238107.
4
Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex.
PLoS Comput Biol. 2017 Dec 18;13(12):e1005811. doi: 10.1371/journal.pcbi.1005811. eCollection 2017 Dec.
5
Dissecting fat-tailed fluctuations in the cytoskeleton with active micropost arrays.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13839-13846. doi: 10.1073/pnas.1900963116. Epub 2019 Jun 25.
6
7
Morphological Transformation and Force Generation of Active Cytoskeletal Networks.
PLoS Comput Biol. 2017 Jan 23;13(1):e1005277. doi: 10.1371/journal.pcbi.1005277. eCollection 2017 Jan.
8
Intra-bundle contractions enable extensile properties of active actin networks.
Sci Rep. 2021 Jan 29;11(1):2677. doi: 10.1038/s41598-021-81601-0.
9
MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.
PLoS Comput Biol. 2016 Apr 27;12(4):e1004877. doi: 10.1371/journal.pcbi.1004877. eCollection 2016 Apr.
10
Active patterning and asymmetric transport in a model actomyosin network.
J Chem Phys. 2013 Dec 21;139(23):235103. doi: 10.1063/1.4848657.

引用本文的文献

1
Enhanced extracellular matrix remodeling due to embedded spheroid fluidization.
New J Phys. 2025 Jul 1;27(7):073301. doi: 10.1088/1367-2630/ade81e. Epub 2025 Jul 10.
2
Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions.
PLoS Comput Biol. 2024 Jul 1;20(7):e1012238. doi: 10.1371/journal.pcbi.1012238. eCollection 2024 Jul.
3
Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids.
APL Bioeng. 2024 May 3;8(2):026109. doi: 10.1063/5.0191765. eCollection 2024 Jun.
4
Many-body interactions between contracting living cells.
Eur Phys J E Soft Matter. 2024 Feb 19;47(2):14. doi: 10.1140/epje/s10189-024-00407-w.
5
Clots reveal anomalous elastic behavior of fiber networks.
Sci Adv. 2024 Jan 12;10(2):eadh1265. doi: 10.1126/sciadv.adh1265. Epub 2024 Jan 10.
6
Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors.
Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2300174121. doi: 10.1073/pnas.2300174121. Epub 2024 Jan 4.
7
Mechanical Intercellular Communication via Matrix-Borne Cell Force Transmission During Vascular Network Formation.
Adv Sci (Weinh). 2024 Jan;11(3):e2306210. doi: 10.1002/advs.202306210. Epub 2023 Nov 23.
8
Liquid-liquid phase separation within fibrillar networks.
Nat Commun. 2023 Sep 29;14(1):6085. doi: 10.1038/s41467-023-41528-8.
9
Inference of long-range cell-cell force transmission from ECM remodeling fluctuations.
Commun Biol. 2023 Aug 3;6(1):811. doi: 10.1038/s42003-023-05179-1.
10
Direct detection of deformation modes on varying length scales in active biopolymer networks.
bioRxiv. 2025 Jan 26:2023.05.15.540780. doi: 10.1101/2023.05.15.540780.

本文引用的文献

1
Forcing cells into shape: the mechanics of actomyosin contractility.
Nat Rev Mol Cell Biol. 2015 Aug;16(8):486-98. doi: 10.1038/nrm4012. Epub 2015 Jul 1.
2
Microbuckling of fibrin provides a mechanism for cell mechanosensing.
J R Soc Interface. 2015 Jul 6;12(108):20150320. doi: 10.1098/rsif.2015.0320.
3
Connecting local active forces to macroscopic stress in elastic media.
Soft Matter. 2015 Feb 28;11(8):1597-605. doi: 10.1039/c4sm02526a.
4
Actin dynamics, architecture, and mechanics in cell motility.
Physiol Rev. 2014 Jan;94(1):235-63. doi: 10.1152/physrev.00018.2013.
5
Shear shocks in fragile networks.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20929-34. doi: 10.1073/pnas.1314468110. Epub 2013 Dec 5.
6
Cells actively stiffen fibrin networks by generating contractile stress.
Biophys J. 2013 Nov 19;105(10):2240-51. doi: 10.1016/j.bpj.2013.10.008.
7
Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16456-61. doi: 10.1073/pnas.1221524110. Epub 2013 Sep 24.
8
F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20820-5. doi: 10.1073/pnas.1214753109. Epub 2012 Dec 3.
9
Requirements for contractility in disordered cytoskeletal bundles.
New J Phys. 2012 Mar 1;14. doi: 10.1088/1367-2630/14/3/033037. Epub 2012 Mar 28.
10
Contractile units in disordered actomyosin bundles arise from F-actin buckling.
Phys Rev Lett. 2012 Jun 8;108(23):238107. doi: 10.1103/PhysRevLett.108.238107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验