Ronceray Pierre, Broedersz Chase P, Lenz Martin
Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France;
Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany; Lewis-Sigler Institute for Integrative Genomics and Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2827-32. doi: 10.1073/pnas.1514208113. Epub 2016 Feb 26.
Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue.
大规模力的产生对于诸如细胞运动、胚胎发育和肌肉收缩等生物学功能至关重要。在这些过程中,由驱动蛋白在分子水平产生的力通过无序的纤维网络进行传递,从而产生大规模的主动应力。尽管这些纤维网络在宏观上已得到充分表征,但微观主动单元产生这种应力的机制尚不清楚。在此,我们从理论上研究了这些网络中的力传递。我们发现,局部主动单元附近的纤维集体屈曲会导致应力整流,进而实现强烈放大的各向同性收缩。这种应力放大因网络的无序性质而得到加强,但在主动单元高密度时会饱和。我们的预测与重构组织和肌动球蛋白网络的实验在定量上一致,并揭示了网络微观结构在塑造细胞和组织中的主动应力方面的作用。