Suppr超能文献

具有功效增强的网络数据假设检验

Hypothesis Testing for Network Data with Power Enhancement.

作者信息

Xia Yin, Li Lexin

机构信息

Fudan University and University of California at Berkeley.

出版信息

Stat Sin. 2022;32:293-321. doi: 10.5705/ss.202019.0361.

Abstract

Comparing two population means of network data is of paramount importance in a wide range of scientific applications. Numerous existing network inference solutions focus on global testing of entire networks, without comparing individual network links. The observed data often take the form of vectors or matrices, and the problem is formulated as comparing two covariance or precision matrices under a normal or matrix normal distribution. Moreover, many tests suffer from a limited power under a small sample size. In this article, we tackle the problem of network comparison, both global and simultaneous inferences, when the data come in a different format, i.e., in the form of a collection of symmetric matrices, each of which encodes the network structure of an individual subject. Such data format commonly arises in applications such as brain connectivity analysis and clinical genomics. We no longer require the underlying data to follow a normal distribution, but instead impose some moment conditions that are easily satisfied for numerous types of network data. Furthermore, we propose a power enhancement procedure, and show that it can control the false discovery, while it has the potential to substantially enhance the power of the test. We investigate the efficacy of our testing procedure through both an asymptotic analysis and a simulation study under a finite sample size. We further illustrate our method with examples of brain connectivity analysis.

摘要

在广泛的科学应用中,比较网络数据的两个总体均值至关重要。许多现有的网络推断解决方案侧重于对整个网络进行全局测试,而不比较单个网络链接。观测数据通常采用向量或矩阵的形式,问题被表述为在正态或矩阵正态分布下比较两个协方差矩阵或精度矩阵。此外,许多检验在小样本量下功效有限。在本文中,当数据以不同格式出现时,即作为对称矩阵的集合形式出现,其中每个矩阵编码个体受试者的网络结构,我们解决网络比较问题,包括全局推断和同时推断。这种数据格式常见于脑连接性分析和临床基因组学等应用中。我们不再要求基础数据服从正态分布,而是施加一些矩条件,这些条件对于多种类型的网络数据很容易满足。此外,我们提出了一种功效增强程序,并表明它可以控制错误发现率,同时有可能大幅提高检验的功效。我们通过渐近分析和有限样本量下的模拟研究来研究我们检验程序的功效。我们还用脑连接性分析的例子进一步说明了我们的方法。

相似文献

3
NETWORK DIFFERENTIAL CONNECTIVITY ANALYSIS.网络差异连通性分析
Ann Appl Stat. 2022 Dec;16(4):2166-2182. doi: 10.1214/21-aoas1581. Epub 2022 Sep 26.
6
Set-based differential covariance testing for genomics.基于集合的基因组学差异协方差检验
Stat (Int Stat Inst). 2019;8(1):e235. doi: 10.1002/sta4.235. Epub 2019 Aug 6.
7
Testing Mediation Effects Using Logic of Boolean Matrices.使用布尔矩阵逻辑检验中介效应
J Am Stat Assoc. 2022;117(540):2014-2027. doi: 10.1080/01621459.2021.1895177. Epub 2021 Apr 20.

引用本文的文献

本文引用的文献

1
Simultaneous Covariance Inference for Multimodal Integrative Analysis.用于多模态整合分析的同步协方差推断
J Am Stat Assoc. 2020;115(531):1279-1291. doi: 10.1080/01621459.2019.1623040. Epub 2019 Jun 28.
2
Multiple Matrix Gaussian Graphs Estimation.多元矩阵高斯图估计
J R Stat Soc Series B Stat Methodol. 2018 Nov;80(5):927-950. doi: 10.1111/rssb.12278. Epub 2018 Jun 14.
5
Joint Estimation of Multiple Graphical Models from High Dimensional Time Series.基于高维时间序列的多个图形模型联合估计
J R Stat Soc Series B Stat Methodol. 2016 Mar 1;78(2):487-504. doi: 10.1111/rssb.12123. Epub 2015 Jul 6.
8
Comparison of statistical tests for group differences in brain functional networks.脑功能网络组间差异统计检验的比较
Neuroimage. 2014 Nov 1;101:681-94. doi: 10.1016/j.neuroimage.2014.07.031. Epub 2014 Jul 30.
9
Graph analysis of the human connectome: promise, progress, and pitfalls.人类连接组学的图分析:前景、进展与挑战。
Neuroimage. 2013 Oct 15;80:426-44. doi: 10.1016/j.neuroimage.2013.04.087. Epub 2013 Apr 30.
10
Age-related changes in brain structural covariance networks.与年龄相关的大脑结构协变网络的变化。
Front Hum Neurosci. 2013 Mar 26;7:98. doi: 10.3389/fnhum.2013.00098. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验