Zhou Yonghui, Wu Juefei, Ning Wei, Li Nana, Du Yongping, Chen Xuliang, Zhang Ranran, Chi Zhenhua, Wang Xuefei, Zhu Xiangde, Lu Pengchao, Ji Cheng, Wan Xiangang, Yang Zhaorong, Sun Jian, Yang Wenge, Tian Mingliang, Zhang Yuheng, Mao Ho-Kwang
High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2904-9. doi: 10.1073/pnas.1601262113. Epub 2016 Feb 29.
As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments.
作为一种新型拓扑材料,ZrTe5在极端条件下展现出许多奇异特性。通过在高压下进行电阻和交流磁化率测量,发现128K附近的电阻异常在6.2GPa时被完全抑制,同时出现了完全超导转变。超导转变温度Tc随外加压力升高,在14.6GPa时达到最大值4.0K,随后略有下降,但直至68.5GPa都几乎保持恒定值。在21.2GPa以上的压力下,出现了第二个超导相,其最大Tc约为6.0K,并与原始超导相共存直至本工作研究的最大压力。原位高压同步辐射X射线衍射和拉曼光谱结合理论计算表明,观察到的两阶段超导行为与6GPa左右从常压Cmcm相到高压C2/m相的结构相变相关,以及与20GPa以上C2/m和P-1两种高压相的混合相关。结构、输运测量和理论计算的结合使得能够全面理解极端环境下三维拓扑材料中出现的奇异特性。