Shi Mengzhu, Yu Fanghang, Yang Ye, Meng Fanbao, Lei Bin, Luo Yang, Sun Zhe, He Junfeng, Wang Rui, Jiang Zhicheng, Liu Zhengtai, Shen Dawei, Wu Tao, Wang Zhenyu, Xiang Ziji, Ying Jianjun, Chen Xianhui
CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China.
Nat Commun. 2022 May 19;13(1):2773. doi: 10.1038/s41467-022-30442-0.
Kagome lattice composed of transition-metal ions provides a great opportunity to explore the intertwining between geometry, electronic orders and band topology. The discovery of multiple competing orders that connect intimately with the underlying topological band structure in nonmagnetic kagome metals AVSb (A = K, Rb, Cs) further pushes this topic to the quantum frontier. Here we report a new class of vanadium-based compounds with kagome bilayers, namely AVSb (A = K, Rb, Cs) and VSb, which, together with AVSb, compose a series of kagome compounds with a generic chemical formula (ASb)(VSb) (m = 1, 2; n = 1, 2). Theoretical calculations combined with angle-resolved photoemission measurements reveal that these compounds feature Dirac nodal lines in close vicinity to the Fermi level. Pressure-induced superconductivity in AVSb further suggests promising emergent phenomena in these materials. The establishment of a new family of layered kagome materials paves the way for designer of fascinating kagome systems with diverse topological nontrivialities and collective ground states.
由过渡金属离子构成的 Kagome 晶格为探索几何结构、电子序和能带拓扑之间的相互交织提供了绝佳机会。在非磁性 Kagome 金属 AVSb(A = K、Rb、Cs)中发现了与潜在拓扑能带结构紧密相连的多种竞争序,这进一步将该主题推向了量子前沿。在此,我们报道了一类新的具有 Kagome 双层结构的钒基化合物,即 AVSb(A = K、Rb、Cs)和 VSb,它们与 AVSb 一起构成了一系列通式为(ASb)(VSb) (m = 1, 2;n = 1, 2)的 Kagome 化合物。理论计算与角分辨光电子能谱测量相结合表明,这些化合物在费米能级附近具有狄拉克节线。AVSb 中压力诱导的超导性进一步表明这些材料中存在有前景的涌现现象。一类新的层状 Kagome 材料的建立为设计具有多样拓扑非平凡性和集体基态的迷人 Kagome 体系铺平了道路。