Suppr超能文献

物理微环境对肿瘤进展和转移的影响。

Impact of the physical microenvironment on tumor progression and metastasis.

作者信息

Spill Fabian, Reynolds Daniel S, Kamm Roger D, Zaman Muhammad H

机构信息

Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.

Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, United States.

出版信息

Curr Opin Biotechnol. 2016 Aug;40:41-48. doi: 10.1016/j.copbio.2016.02.007. Epub 2016 Mar 2.

Abstract

The tumor microenvironment is increasingly understood to contribute to cancer development and progression by affecting the complex interplay of genetic and epigenetic changes within the cells themselves. Moreover, recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior such as proliferation, cancer stem cell properties, and metastatic potential. Whereas initial assays have focused on basic ECM physical properties, such as stiffness, novel in vitro systems are becoming increasingly sophisticated in differentiating between distinct physical cues-ECM pore size, fiber alignment, and molecular composition-and elucidating the different roles these properties play in driving tumor progression and metastasis. Combined with advances in our understanding of the mechanisms responsible for how cells sense these properties, a new appreciation for the role of mechanics in cancer is emerging.

摘要

人们越来越认识到肿瘤微环境通过影响细胞自身内部遗传和表观遗传变化的复杂相互作用,对癌症的发生和发展起作用。此外,最近的研究强调,除了来自微环境的生化信号外,物理信号也能极大地改变细胞行为,如增殖、癌症干细胞特性和转移潜能。虽然最初的检测集中在细胞外基质的基本物理特性,如硬度,但新型体外系统在区分不同的物理信号(细胞外基质孔径、纤维排列和分子组成)以及阐明这些特性在驱动肿瘤进展和转移中所起的不同作用方面正变得越来越复杂。结合我们对细胞感知这些特性的机制的理解的进展,对力学在癌症中的作用有了新的认识。

相似文献

1
Impact of the physical microenvironment on tumor progression and metastasis.
Curr Opin Biotechnol. 2016 Aug;40:41-48. doi: 10.1016/j.copbio.2016.02.007. Epub 2016 Mar 2.
3
The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression.
Cancer Metastasis Rev. 2024 Jun;43(2):823-844. doi: 10.1007/s10555-024-10166-x. Epub 2024 Jan 19.
4
Forcing through Tumor Metastasis: The Interplay between Tissue Rigidity and Epithelial-Mesenchymal Transition.
Trends Cell Biol. 2016 Feb;26(2):111-120. doi: 10.1016/j.tcb.2015.09.009. Epub 2015 Oct 24.
5
The microenvironment and cytoskeletal remodeling in tumor cell invasion.
Int Rev Cell Mol Biol. 2020;356:257-289. doi: 10.1016/bs.ircmb.2020.06.003. Epub 2020 Jul 4.
6
Role of the mechanical microenvironment in cancer development and progression.
Cancer Biol Med. 2020 May 15;17(2):282-292. doi: 10.20892/j.issn.2095-3941.2019.0437.
7
Mechanoresponsive metabolism in cancer cell migration and metastasis.
Cell Metab. 2021 Jul 6;33(7):1307-1321. doi: 10.1016/j.cmet.2021.04.002. Epub 2021 Apr 28.
8
Linking cell mechanical memory and cancer metastasis.
Nat Rev Cancer. 2024 Mar;24(3):216-228. doi: 10.1038/s41568-023-00656-5. Epub 2024 Jan 18.
9
The fundamental role of mechanical properties in the progression of cancer disease and inflammation.
Rep Prog Phys. 2014 Jul;77(7):076602. doi: 10.1088/0034-4885/77/7/076602. Epub 2014 Jul 9.
10
Microenvironment Influences Cancer Cell Mechanics from Tumor Growth to Metastasis.
Adv Exp Med Biol. 2018;1092:69-90. doi: 10.1007/978-3-319-95294-9_5.

引用本文的文献

1
2
New Insights Into Adipokines and the Tumor Microenvironment in Breast Cancer.
Cancer Control. 2025 Jan-Dec;32:10732748251347917. doi: 10.1177/10732748251347917. Epub 2025 Jun 10.
3
EMT induction in normal breast epithelial cells by COX2-expressing fibroblasts.
Cell Commun Signal. 2025 May 22;23(1):237. doi: 10.1186/s12964-025-02227-7.
4
Application of biomechanics in tumor epigenetic research.
Mechanobiol Med. 2024 Aug 22;2(4):100093. doi: 10.1016/j.mbm.2024.100093. eCollection 2024 Dec.
7
Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies.
Biomark Res. 2025 Apr 18;13(1):62. doi: 10.1186/s40364-025-00779-x.
8
Laminin α5: a key factor in tumor metastasis.
Clin Exp Metastasis. 2025 Apr 11;42(3):24. doi: 10.1007/s10585-025-10341-6.
10
The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma.
PeerJ. 2025 Apr 2;13:e19213. doi: 10.7717/peerj.19213. eCollection 2025.

本文引用的文献

1
Collective motion of mammalian cell cohorts in 3D.
Integr Biol (Camb). 2015 Dec;7(12):1526-33. doi: 10.1039/c5ib00208g. Epub 2015 Nov 9.
4
Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure.
Nature. 2015 Jul 2;523(7558):92-5. doi: 10.1038/nature14329. Epub 2015 May 11.
5
Development of a Fluorescent Reporter System to Delineate Cancer Stem Cells in Triple-Negative Breast Cancer.
Stem Cells. 2015 Jul;33(7):2114-2125. doi: 10.1002/stem.2021. Epub 2015 May 15.
6
A flexible reporter system for direct observation and isolation of cancer stem cells.
Stem Cell Reports. 2015 Jan 13;4(1):155-169. doi: 10.1016/j.stemcr.2014.11.002. Epub 2014 Dec 11.
7
3D collagen alignment limits protrusions to enhance breast cancer cell persistence.
Biophys J. 2014 Dec 2;107(11):2546-58. doi: 10.1016/j.bpj.2014.10.035.
8
3D traction stresses activate protease-dependent invasion of cancer cells.
Biophys J. 2014 Dec 2;107(11):2528-37. doi: 10.1016/j.bpj.2014.07.078.
9
Remodelling the extracellular matrix in development and disease.
Nat Rev Mol Cell Biol. 2014 Dec;15(12):786-801. doi: 10.1038/nrm3904.
10
Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force.
Science. 2014 Oct 31;346(6209):1254211. doi: 10.1126/science.1254211.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验