‡Department of Materials Science and Engineering, National University of Singapore, 119260, Singapore.
§Department of Physics, National University of Singapore, 117542, Singapore.
ACS Nano. 2015 Apr 28;9(4):4210-8. doi: 10.1021/acsnano.5b00456. Epub 2015 Mar 24.
Reversible nanoscale magnetization reversal controlled merely by electric fields is still challenging at the moment. In this report, first-principles calculation indicates that electric field-induced magnetization reversal can be achieved by the appearance of unidirectional magnetic anisotropy along the (110) direction in Fe-deficient cobalt ferrite (CoFe(2-x)O4, CFO), as a result of the migration and local redistribution of the Co(2+) ions adjacent to the B-site Fe vacancies. In good agreement with the theoretical model, we experimentally observed that in the CFO thin films the nanoscale magnetization can be reversibly and nonvolatilely reversed at room temperature via an electrical ion-manipulation approach, wherein the application of electric fields with appropriate polarity and amplitude can modulate the size of magnetic domains with different magnetizations up to 70%. With the low power consumption (subpicojoule) characteristics and the elimination of external magnetic field, the observed electric field-induced magnetization reversal can be used for the construction of energy-efficient spintronic devices, e.g., low-power electric-write and magnetic-read memories.
目前,仅通过电场控制可反转的纳米级磁化反转仍然具有挑战性。在本报告中,第一性原理计算表明,通过在(110)方向上出现各向异性磁各向异性,可以在富铁钴铁氧体(CoFe(2-x)O4,CFO)中实现电场诱导的磁化反转,这是由于与 B 位 Fe 空位相邻的 Co(2+)离子的迁移和局部再分布。与理论模型非常吻合,我们实验观察到在 CFO 薄膜中,通过电离子操纵方法可以在室温下实现纳米级磁化的可逆和非易失性反转,其中施加具有适当极性和幅度的电场可以调制不同磁化的磁畴的大小高达 70%。由于具有低功耗(亚皮焦耳)特性和消除外部磁场,所观察到的电场诱导的磁化反转可用于构建节能的自旋电子器件,例如低功耗电写入和磁读取存储器。