Moustafa Ahmed A, Phillips Joseph, Kéri Szabolcs, Misiak Blazej, Frydecka Dorota
School of Social Sciences and Psychology, Western Sydney UniversitySydney, NSW, Australia; Marcs Institute for Brain and Behavior, Western Sydney UniversitySydney, NSW, Australia.
School of Social Sciences and Psychology, Western Sydney University Sydney, NSW, Australia.
Front Comput Neurosci. 2016 Feb 23;10:16. doi: 10.3389/fncom.2016.00016. eCollection 2016.
Mounting evidence shows that brain disorders involve multiple and different neural dysfunctions, including regional brain damage, change to cell structure, chemical imbalance, and/or connectivity loss among different brain regions. Understanding the complexity of brain disorders can help us map these neural dysfunctions to different symptom clusters as well as understand subcategories of different brain disorders. Here, we discuss data on the mapping of symptom clusters to different neural dysfunctions using examples from brain disorders such as major depressive disorder (MDD), Parkinson's disease (PD), schizophrenia, posttraumatic stress disorder (PTSD) and Alzheimer's disease (AD). In addition, we discuss data on the similarities of symptoms in different disorders. Importantly, computational modeling work may be able to shed light on plausible links between various symptoms and neural damage in brain disorders.
越来越多的证据表明,脑部疾病涉及多种不同的神经功能障碍,包括局部脑损伤、细胞结构改变、化学失衡和/或不同脑区之间的连接丧失。了解脑部疾病的复杂性有助于我们将这些神经功能障碍与不同的症状群相对应,以及理解不同脑部疾病的子类别。在此,我们将以重度抑郁症(MDD)、帕金森病(PD)、精神分裂症、创伤后应激障碍(PTSD)和阿尔茨海默病(AD)等脑部疾病为例,讨论将症状群与不同神经功能障碍相对应的数据。此外,我们还将讨论不同疾病症状相似性的数据。重要的是,计算建模工作或许能够揭示脑部疾病中各种症状与神经损伤之间可能存在的联系。