Suppr超能文献

丝裂原活化蛋白激酶(MAPK)信号通路:在锥虫免疫逃避中的作用

The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.

作者信息

Soares-Silva Mercedes, Diniz Flavia F, Gomes Gabriela N, Bahia Diana

机构信息

Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil.

Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil.

出版信息

Front Microbiol. 2016 Feb 24;7:183. doi: 10.3389/fmicb.2016.00183. eCollection 2016.

Abstract

Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.

摘要

利什曼原虫属和克氏锥虫分别是利什曼病和恰加斯病的病原体,这两种被忽视的热带病影响着全球约2500万人。这些寄生虫属于锥虫科,都是专性细胞内寄生虫,它们操纵宿主信号通路和先天免疫系统以建立感染。丝裂原活化蛋白激酶(MAPK)是真核生物中高度保守的丝氨酸和苏氨酸蛋白激酶,参与调节生理和病理生理细胞反应的信号转导通路。这篇小型综述重点介绍了关于利什曼原虫属和克氏锥虫为靶向宿主MAPK信号通路并劫持免疫反应而进化出的机制的现有知识,并且以此方式促进寄生虫在宿主体内的存活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2aa/4764696/9e3b6593073e/fmicb-07-00183-g001.jpg

相似文献

1
The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.
Front Microbiol. 2016 Feb 24;7:183. doi: 10.3389/fmicb.2016.00183. eCollection 2016.
2
The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection.
Biomed Res Int. 2015;2015:324915. doi: 10.1155/2015/324915. Epub 2015 May 18.
3
Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids.
Front Immunol. 2016 May 31;7:212. doi: 10.3389/fimmu.2016.00212. eCollection 2016.
4
Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans.
Front Cell Infect Microbiol. 2021 Apr 16;11:669079. doi: 10.3389/fcimb.2021.669079. eCollection 2021.
7
The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival.
Front Cell Dev Biol. 2020 Jun 10;8:396. doi: 10.3389/fcell.2020.00396. eCollection 2020.
9
Signal Transduction Pathways as Therapeutic Target for Chagas Disease.
Curr Med Chem. 2019;26(36):6572-6589. doi: 10.2174/0929867326666190620093029.

引用本文的文献

2
Natural products alleviate viral pneumonia by modulating inflammatory and oxidative-stress pathways.
Front Pharmacol. 2025 Aug 11;16:1657829. doi: 10.3389/fphar.2025.1657829. eCollection 2025.
3
Functional genomics of trypanotolerant and trypanosusceptible cattle infected with Trypanosoma congolense across multiple time points and tissues.
PLoS Negl Trop Dis. 2025 Aug 4;19(8):e0012882. doi: 10.1371/journal.pntd.0012882. eCollection 2025 Aug.
5
Molecular mechanisms of co-infections.
EMBO Rep. 2025 Aug;26(15):3714-3729. doi: 10.1038/s44319-025-00517-2. Epub 2025 Jul 4.
8
Exploring the anti-anaphylaxis potential of natural products: A Review.
Inflammopharmacology. 2025 Mar 19. doi: 10.1007/s10787-025-01685-2.
9
Plant Defense Responses to Insect Herbivores Through Molecular Signaling, Secondary Metabolites, and Associated Epigenetic Regulation.
Plant Environ Interact. 2025 Feb 16;6(1):e70035. doi: 10.1002/pei3.70035. eCollection 2025 Feb.
10
bioactive compounds as a novel sterol 14a-demethylase (CYP51) inhibitor: an in silico study.
In Silico Pharmacol. 2025 Feb 13;13(1):28. doi: 10.1007/s40203-025-00312-w. eCollection 2025.

本文引用的文献

1
Trypanosoma cruzi extracellular amastigotes trigger the protein kinase D1-cortactin-actin pathway during cell invasion.
Cell Microbiol. 2015 Dec;17(12):1797-810. doi: 10.1111/cmi.12472. Epub 2015 Jul 16.
4
The Regulation of CD4(+) T Cell Responses during Protozoan Infections.
Front Immunol. 2014 Oct 13;5:498. doi: 10.3389/fimmu.2014.00498. eCollection 2014.
5
SHP-1 plays a crucial role in CD40 signaling reciprocity.
J Immunol. 2014 Oct 1;193(7):3644-53. doi: 10.4049/jimmunol.1400620. Epub 2014 Sep 3.
6
Protozoan parasites and type I interferons: a cold case reopened.
Trends Parasitol. 2014 Oct;30(10):491-8. doi: 10.1016/j.pt.2014.07.007. Epub 2014 Aug 18.
7
Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting.
Front Oncol. 2014 Jun 24;4:160. doi: 10.3389/fonc.2014.00160. eCollection 2014.
8
Chronic infection by Leishmania amazonensis mediated through MAPK ERK mechanisms.
Immunol Res. 2014 Aug;59(1-3):153-65. doi: 10.1007/s12026-014-8535-y.
9
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses.
Mediators Inflamm. 2014;2014:352371. doi: 10.1155/2014/352371. Epub 2014 Mar 20.
10
Targeted extracellular signal-regulated kinase activation mediated by Leishmania amazonensis requires MP1 scaffold.
Microbes Infect. 2014 Apr;16(4):328-36. doi: 10.1016/j.micinf.2013.12.006. Epub 2014 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验