Akbari Abozar, Sheath Phillip, Martin Samuel T, Shinde Dhanraj B, Shaibani Mahdokht, Banerjee Parama Chakraborty, Tkacz Rachel, Bhattacharyya Dibakar, Majumder Mainak
Department of Mechanical and Aerospace Engineering, Nanoscale Science and Engineering Laboratory (NSEL), Monash University, Clayton, Victoria 3800, Australia.
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA.
Nat Commun. 2016 Mar 7;7:10891. doi: 10.1038/ncomms10891.
Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm(2)) in <5 s. Pressure driven transport data demonstrate high retention (>90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71 ± 5 l m(-2) hr(-1) bar(-1) for 150 ± 15 nm thick membranes).
基于石墨烯的膜表现出超快的水传输、对气体和溶剂化分子的精确分子筛分,作为新型分离平台具有巨大潜力;然而,将这些膜扩大到大面积仍然是一个未解决的问题。在这里,我们证明氧化石墨烯(GO)的盘状向列相可以通过一种工业上适用的方法进行剪切排列,在支撑膜上形成高度有序、连续的多层GO薄膜,从而在不到5秒的时间内制备出大面积的膜(13×14平方厘米)。压力驱动的传输数据表明,对于水合半径大于5 Å的带电和不带电有机探针分子,保留率很高(>90%),对于单价和二价盐,保留率适中(30-40%)。膜平面内高度有序的石墨烯片形成有组织的通道,提高了渗透率(对于150±15纳米厚的膜,渗透率为71±5升·米-2·小时-1·巴-1)。