Suppr超能文献

交互式剂量塑形 第1部分:适形调强放疗治疗计划的新范例

Interactive dose shaping part 1: a new paradigm for IMRT treatment planning.

作者信息

Ziegenhein Peter, Ph Kamerling Cornelis, Oelfke Uwe

机构信息

Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK.

出版信息

Phys Med Biol. 2016 Mar 21;61(6):2457-70. doi: 10.1088/0031-9155/61/6/2457. Epub 2016 Mar 7.

Abstract

In this work we present a novel treatment planning technique called interactive dose shaping (IDS) to be employed for the optimization of intensity modulated radiation therapy (IMRT). IDS does not rely on a Newton-based optimization algorithm which is driven by an objective function formed of dose volume constraints on pre-segmented volumes of interest (VOIs). Our new planning technique allows for direct, interactive adaptation of localized planning features. This is realized by a dose modification and recovery (DMR) planning engine which implements a two-step approach: firstly, the desired localized plan adaptation is imposed on the current plan (modification) while secondly inevitable, undesired disturbances of the dose pattern elsewhere are compensated for automatically by the recovery module. Together with an ultra-fast dose update calculation method the DMR engine has been implemented in a newly designed 3D therapy planning system Dynaplan enabling true real-time interactive therapy planning. Here we present the underlying strategy and algorithms of the DMR based planning concept. The functionality of the IDS planning approach is demonstrated for a phantom geometry of clinical resolution and size.

摘要

在这项工作中,我们提出了一种名为交互式剂量塑形(IDS)的新型治疗计划技术,用于优化调强放射治疗(IMRT)。IDS不依赖于基于牛顿法的优化算法,该算法由对预分割感兴趣体积(VOIs)的剂量体积约束构成的目标函数驱动。我们的新计划技术允许对局部计划特征进行直接、交互式调整。这通过剂量修改与恢复(DMR)计划引擎实现,该引擎采用两步法:首先,将所需的局部计划调整施加到当前计划上(修改),而其次,剂量模式在其他地方不可避免的、不期望的干扰由恢复模块自动补偿。与超快速剂量更新计算方法一起,DMR引擎已在新设计的3D治疗计划系统Dynaplan中实现,实现了真正的实时交互式治疗计划。在此,我们介绍基于DMR的计划概念的基本策略和算法。针对具有临床分辨率和尺寸的体模几何结构展示了IDS计划方法的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4191/5390946/17337ce757d9/pmbaa171df01_pr.jpg

相似文献

1
Interactive dose shaping part 1: a new paradigm for IMRT treatment planning.
Phys Med Biol. 2016 Mar 21;61(6):2457-70. doi: 10.1088/0031-9155/61/6/2457. Epub 2016 Mar 7.
3
Interactive dose shaping part 2: proof of concept study for six prostate patients.
Phys Med Biol. 2016 Mar 21;61(6):2471-84. doi: 10.1088/0031-9155/61/6/2471. Epub 2016 Mar 7.
4
Impact of dose calculation accuracy during optimization on lung IMRT plan quality.
J Appl Clin Med Phys. 2015 Jan 8;16(1):5137. doi: 10.1120/jacmp.v16i1.5137.
5
A fast inverse direct aperture optimization algorithm for intensity-modulated radiation therapy.
Med Phys. 2019 Mar;46(3):1127-1139. doi: 10.1002/mp.13368. Epub 2019 Jan 21.
6
Voxel-based automatic multi-criteria optimization for intensity modulated radiation therapy.
Radiat Oncol. 2018 Dec 5;13(1):241. doi: 10.1186/s13014-018-1179-7.
7
Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs.
Phys Med Biol. 2013 Dec 21;58(24):8725-38. doi: 10.1088/0031-9155/58/24/8725. Epub 2013 Dec 4.
8
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.
Med Phys. 2011 Sep;38(9):5217-29. doi: 10.1118/1.3615622.
9
Reduced-order constrained optimization in IMRT planning.
Phys Med Biol. 2008 Dec 7;53(23):6749-66. doi: 10.1088/0031-9155/53/23/007. Epub 2008 Nov 7.

引用本文的文献

1
Real-time interactive planning for radiotherapy of head and neck cancer with volumetric modulated arc therapy.
Phys Imaging Radiat Oncol. 2019 Apr 4;9:83-88. doi: 10.1016/j.phro.2019.03.002. eCollection 2019 Jan.
2
Advanced treatment planning strategies to enhance quality and efficiency of radiotherapy.
Phys Imaging Radiat Oncol. 2019 Sep 13;11:69-70. doi: 10.1016/j.phro.2019.09.002. eCollection 2019 Jul.
3
Realizing the potential of magnetic resonance image guided radiotherapy in gynaecological and rectal cancer.
Br J Radiol. 2019 Jun;92(1098):20180670. doi: 10.1259/bjr.20180670. Epub 2019 May 14.
4
Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations.
Br J Radiol. 2018 Dec;91(1092):20180270. doi: 10.1259/bjr.20180270. Epub 2018 Sep 4.
5
Interactive dose shaping part 2: proof of concept study for six prostate patients.
Phys Med Biol. 2016 Mar 21;61(6):2471-84. doi: 10.1088/0031-9155/61/6/2471. Epub 2016 Mar 7.

本文引用的文献

1
Interactive dose shaping part 2: proof of concept study for six prostate patients.
Phys Med Biol. 2016 Mar 21;61(6):2471-84. doi: 10.1088/0031-9155/61/6/2471. Epub 2016 Mar 7.
2
Real-time interactive treatment planning.
Phys Med Biol. 2014 Sep 7;59(17):4845-59. doi: 10.1088/0031-9155/59/17/4845. Epub 2014 Aug 6.
3
The critical spot eraser-a method to interactively control the correction of local hot and cold spots in IMRT planning.
Phys Med Biol. 2013 Mar 21;58(6):1855-67. doi: 10.1088/0031-9155/58/6/1855. Epub 2013 Feb 27.
4
Boosting runtime-performance of photon pencil beam algorithms for radiotherapy treatment planning.
Phys Med. 2012 Oct;28(4):273-80. doi: 10.1016/j.ejmp.2011.10.004. Epub 2011 Nov 8.
5
Toward truly optimal IMRT dose distribution: inverse planning with voxel-specific penalty.
Technol Cancer Res Treat. 2010 Dec;9(6):629-36. doi: 10.1177/153303461000900611.
6
A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation.
Radiother Oncol. 2007 Nov;85(2):292-8. doi: 10.1016/j.radonc.2007.06.020. Epub 2007 Sep 24.
7
IMRT dose shaping with regionally variable penalty scheme.
Med Phys. 2003 Apr;30(4):544-51. doi: 10.1118/1.1556610.
8
Using voxel-dependent importance factors for interactive DVH-based dose optimization.
Phys Med Biol. 2002 May 21;47(10):1659-69. doi: 10.1088/0031-9155/47/10/304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验